People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Langley, Graham
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Development of ultrahigh‐performance liquid chromatography/mass spectrometry and ultrahigh‐performance supercritical fluid chromatography/mass spectrometry assays to determine the concentration of Bitrex™ and sodium saccharin in homemade facemask fit testing solutionscitations
- 2017The application of new approaches to the analysis of deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)citations
- 2007Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus sppcitations
Places of action
Organizations | Location | People |
---|
article
Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp
Abstract
A newly acquired polyhydroxyalkanoate (PHA) producing Bacillus spp. was identified to be a strain of Bacillus cereus using a range of microbiological and molecular techniques. This strain, named B. cereus SPV, was found to be capable of using a wide range of carbon sources including glucose, fructose, sucrose, various fatty acids and gluconate for the production of PHAs, an advantage for the commercial production of the polymers. The media used for the polymer production was novel in the context of the genus Bacillus. The PHA, once produced, was found to remain at a constant maximal concentration, without any degradation, a great advantage for the commercial production of the PHAs. This particular strain of Bacillus spp. was able to synthesize various PHAs with 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB)-like monomer units from structurally unrelated carbon sources such as fructose, sucrose and gluconate. This is the first report of the incorporation of a 4HB related monomer containing PHA by the genus Bacillus and from structurally unrelated carbon sources. The PHAs isolated had molecular weights ranging between (0.4 and 0.8) × 106 and low polydispersity index values (MW/MN) ranging from 2.6 to 3.4.