People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karakoç, Alp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Design, Fabrication, and Characterization of 3D-Printed Multiphase Scaffolds Based on Triply Periodic Minimal Surfacescitations
- 2023Effects of leaflet curvature and thickness on the crimping stresses in transcatheter heart valvecitations
- 2023Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communicationscitations
- 2022Predicting the upper-bound of interlaminar impact damage in structural composites through a combined nanoindentation and computational mechanics techniquecitations
- 2022Simplified indentation mechanics to connect nanoindentation and low-energy impact of structural composites and polymers
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturingcitations
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2020Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matchingcitations
- 2020Mechanical and thermal behavior of natural fiber-polymer composites without compatibilizerscitations
- 2020A predictive failure framework for brittle porous materials via machine learning and geometric matching methodscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2019Machine Learning assisted design of tailor-made nanocellulose filmscitations
- 2018Stochastic fracture of additively manufactured porous compositescitations
- 2016Shape and cell wall slenderness effects on the stiffness of wood cell aggregates in the transverse planecitations
- 2016Modeling of wood-like cellular materials with a geometrical data extraction algorithmcitations
- 2013Effective stiffness and strength properties of cellular materials in the transverse planecitations
Places of action
Organizations | Location | People |
---|
article
Effects of leaflet curvature and thickness on the crimping stresses in transcatheter heart valve
Abstract
<p>With the current advances and expertise in biomedical device technologies, transcatheter heart valves (THVs) have been drawing significant attention. Various studies have been carried out on their durability and damage by dynamic loading in operational conditions. However, very few numerical investigations have been conducted to understand the effects of leaflet curvature and thickness on the crimping stresses which arise during the surgical preparation processes. In order to contribute to the current state of the art, a full heart valve model was presented, the leaflet curvature and thickness of which were then parameterized so as to understand the stress generation as a result of the crimping procedure during the surgical preparations. The results show that the existence of stresses is inevitable during the crimping procedure, which is a reduction factor for valve durability. Especially, stresses on the leaflets at the suture sites connected with the skirt were deduced to be critical and may result in leaflet ruptures after THV implantation.</p>