People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Isaksson, Hanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of storage time prior to cryopreservation on mechanical properties of aortic homograftscitations
- 2022Crack propagation in articular cartilage under cyclic loading using cohesive finite element modelingcitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2020Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interfacecitations
- 2020Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomographycitations
- 2020Comparison of small‐angle neutron and X‐ray scattering for studying cortical bone nanostructurecitations
- 2020The influence of microstructure on crack propagation in cortical bone at the mesoscalecitations
- 2019An interface damage model that captures crack propagation at the microscale in cortical bone using XFEMcitations
- 2019Crack propagation in cortical bone is affected by the characteristics of the cement line : a parameter study using an XFEM interface damage modelcitations
- 2019Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitutecitations
- 2017Neutron tomographic imaging of bone-implant interfacecitations
- 2016Differences in acoustic impedance of fresh and embedded human trabecular bone samples - scanning acoustic microscopy and numerical evaluationcitations
- 2016Bone mineral crystal size and organization vary across mature rat bone cortexcitations
- 2016How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurementscitations
Places of action
Organizations | Location | People |
---|
article
How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements
Abstract
Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R2=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10–16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response.