Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jurvelin, J. S.

  • Google
  • 9
  • 30
  • 790

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2017Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – an experimental and finite element study26citations
  • 2014Deformation of articular cartilage during static loading of a knee joint - experimental and finite element analysis104citations
  • 2007Effect of human trabecular bone composition on its electrical properties45citations
  • 2006Interrelationships between electrical properties and microstructure of human trabecular bone40citations
  • 2006T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage104citations
  • 2005Prediction of mechanical properties of human trabecular bone by electrical measurements52citations
  • 2003Electrical and dielectric properties of bovine trabecular bone - Relationships with mechanical properties and mineral density50citations
  • 2002Ultrasonic characterization of articular cartilagecitations
  • 2002Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation369citations

Places of action

Chart of shared publication
Töyräs, Juha
9 / 28 shared
Tanska, P.
1 / 1 shared
Ojanen, X.
1 / 1 shared
Isaksson, H.
1 / 1 shared
Magnusson, S. P.
1 / 2 shared
Malo, M. K. H.
1 / 1 shared
Koistinen, A. P.
1 / 1 shared
Väänänen, S. P.
1 / 1 shared
Grassi, L.
1 / 2 shared
Ribel-Madsen, S. M.
1 / 1 shared
Korhonen, R. K.
4 / 6 shared
Salo, J.
1 / 3 shared
Mononen, M. E.
1 / 1 shared
Halonen, K. S.
1 / 1 shared
Hakulinen, M. A.
4 / 4 shared
Lammi, M. J.
1 / 1 shared
Sierpowska, J.
3 / 3 shared
Lappalainen, R.
4 / 8 shared
Day, J. S.
2 / 2 shared
Kiviranta, I.
2 / 3 shared
Weinans, H.
2 / 8 shared
Nissi, M. J.
1 / 3 shared
Laasanen, M. S.
3 / 3 shared
Nieminen, M. T.
2 / 2 shared
Rieppo, J.
3 / 3 shared
Sierpowska, Joanna
1 / 1 shared
Saarakkala, S.
1 / 5 shared
Helminen, H. J.
2 / 3 shared
Nieminen, H. J.
1 / 1 shared
Hirvonen, J.
2 / 2 shared
Chart of publication period
2017
2014
2007
2006
2005
2003
2002

Co-Authors (by relevance)

  • Töyräs, Juha
  • Tanska, P.
  • Ojanen, X.
  • Isaksson, H.
  • Magnusson, S. P.
  • Malo, M. K. H.
  • Koistinen, A. P.
  • Väänänen, S. P.
  • Grassi, L.
  • Ribel-Madsen, S. M.
  • Korhonen, R. K.
  • Salo, J.
  • Mononen, M. E.
  • Halonen, K. S.
  • Hakulinen, M. A.
  • Lammi, M. J.
  • Sierpowska, J.
  • Lappalainen, R.
  • Day, J. S.
  • Kiviranta, I.
  • Weinans, H.
  • Nissi, M. J.
  • Laasanen, M. S.
  • Nieminen, M. T.
  • Rieppo, J.
  • Sierpowska, Joanna
  • Saarakkala, S.
  • Helminen, H. J.
  • Nieminen, H. J.
  • Hirvonen, J.
OrganizationsLocationPeople

article

Deformation of articular cartilage during static loading of a knee joint - experimental and finite element analysis

  • Jurvelin, J. S.
  • Töyräs, Juha
  • Salo, J.
  • Korhonen, R. K.
  • Mononen, M. E.
  • Halonen, K. S.
Abstract

Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30. min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer's knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30. min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration.

Topics
  • surface
  • experiment
  • permeability
  • finite element analysis
  • creep