Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilke, Hans-Joachim

  • Google
  • 7
  • 35
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars6citations
  • 2022Cervical spine and muscle adaptation after spaceflight and relationship to herniation risk1citations
  • 2017A new multiscale micromechanical model of vertebral trabecular bones16citations
  • 2012Fabric based tsai-Wu yield-strength criterion for vertebral trabecular bone in stress space62citations
  • 2011Numerical Homogenization of Trabecular Bone Specimens using Composite Finite Elementscitations
  • 2009Statistical osteoporosis models using composite finite elements7citations
  • 2008Determining Effective Elasticity Parameters of Microstuctured Materialscitations

Places of action

Chart of shared publication
Lerchl, Tanja
1 / 1 shared
Ribeiro, Marx
1 / 2 shared
Nicolini, Luis Fernando
1 / 3 shared
Gruber, Gabriel
1 / 1 shared
Jaramillo, Héctor Enrique
1 / 2 shared
Kirschke, Jan S.
1 / 1 shared
Senner, Veit
1 / 1 shared
Nispel, Kati
1 / 1 shared
Martinez-Valdes, Eduardo
1 / 1 shared
Armbrecht, Gabriele
1 / 1 shared
Albracht, Kirsten
1 / 1 shared
Belavy, Daniel L.
1 / 1 shared
Arvanitidis, Michail
1 / 1 shared
Falla, Deborah
1 / 3 shared
Goell, Fabian
1 / 1 shared
Braunstein, Bjoern
1 / 1 shared
Kaczorowski, Svenja
1 / 1 shared
Rennerfelt, Kajsa
1 / 1 shared
Scheuring, Richard
1 / 1 shared
Karner, Vera
1 / 1 shared
Arora, Nitin Kumar
1 / 1 shared
Sovelius, Roope
1 / 1 shared
Brisby, Helena
1 / 1 shared
Haj-Ali, Rami
1 / 1 shared
Wolfram, Uwe
5 / 24 shared
Galbusera, Fabio
1 / 1 shared
Massarwa, Eyass
1 / 1 shared
Aboudi, Jacob
1 / 1 shared
Zysset, Philippe K.
1 / 8 shared
Gross, Thomas
1 / 4 shared
Schwiedrizk, J.
1 / 1 shared
Pahr, Dieter H.
1 / 4 shared
Schwen, Lars Ole
3 / 3 shared
Rumpf, Martin
3 / 4 shared
Simon, Ulrich
1 / 6 shared
Chart of publication period
2024
2022
2017
2012
2011
2009
2008

Co-Authors (by relevance)

  • Lerchl, Tanja
  • Ribeiro, Marx
  • Nicolini, Luis Fernando
  • Gruber, Gabriel
  • Jaramillo, Héctor Enrique
  • Kirschke, Jan S.
  • Senner, Veit
  • Nispel, Kati
  • Martinez-Valdes, Eduardo
  • Armbrecht, Gabriele
  • Albracht, Kirsten
  • Belavy, Daniel L.
  • Arvanitidis, Michail
  • Falla, Deborah
  • Goell, Fabian
  • Braunstein, Bjoern
  • Kaczorowski, Svenja
  • Rennerfelt, Kajsa
  • Scheuring, Richard
  • Karner, Vera
  • Arora, Nitin Kumar
  • Sovelius, Roope
  • Brisby, Helena
  • Haj-Ali, Rami
  • Wolfram, Uwe
  • Galbusera, Fabio
  • Massarwa, Eyass
  • Aboudi, Jacob
  • Zysset, Philippe K.
  • Gross, Thomas
  • Schwiedrizk, J.
  • Pahr, Dieter H.
  • Schwen, Lars Ole
  • Rumpf, Martin
  • Simon, Ulrich
OrganizationsLocationPeople

article

Statistical osteoporosis models using composite finite elements

  • Schwen, Lars Ole
  • Wolfram, Uwe
  • Wilke, Hans-Joachim
  • Simon, Ulrich
  • Rumpf, Martin
Abstract

<p>Osteoporosis is a widely spread disease with severe consequences for patients and high costs for health care systems. The disease is characterised by a loss of bone mass which induces a loss of mechanical performance and structural integrity. It was found that transverse trabeculae are thinned and perforated while vertical trabeculae stay intact. For understanding these phenomena and the mechanisms leading to fractures of trabecular bone due to osteoporosis, numerous researchers employ micro-finite element models. To avoid disadvantages in setting up classical finite element models, composite finite elements (CFE) can be used. The aim of the study is to test the potential of CFE. For that, a parameter study on numerical lattice samples with statistically simulated, simplified osteoporosis is performed. These samples are subjected to compression and shear loading. Results show that the biggest drop of compressive stiffness is reached for transverse isotropic structures losing 32 % of the trabeculae (minus 89.8% stiffness). The biggest drop in shear stiffness is found for an isotropic structure also losing 32% of the trabeculae (minus 67.3% stiffness). The study indicates that losing trabeculae leads to a worse drop of macroscopic stiffness than thinning of trabeculae. The results further demonstrate the advantages of CFEs for simulating micro-structured samples.</p>

Topics
  • impedance spectroscopy
  • composite
  • isotropic