Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marette, A.

  • Google
  • 2
  • 15
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis.4citations
  • 2014Printing and encapsulation of electrical conductors on polylactic acid (PLA) for sensing applicationscitations

Places of action

Chart of shared publication
Fournier, É.
1 / 1 shared
Goudreault, M.
1 / 1 shared
Mad, Silveira
1 / 1 shared
Laborit Labrada, B.
1 / 1 shared
Laplante, M.
1 / 1 shared
Ac, Gingras
1 / 1 shared
Beauchemin, Nicole
1 / 1 shared
Bellmann, K.
1 / 1 shared
Schwab, M.
1 / 1 shared
De Rooij, Nf
1 / 2 shared
Mattana, G.
1 / 1 shared
Marki, D.
1 / 1 shared
Frolet, N.
1 / 1 shared
Vásquez Quintero, Andrés
1 / 5 shared
Briand, D.
1 / 6 shared
Chart of publication period
2023
2014

Co-Authors (by relevance)

  • Fournier, É.
  • Goudreault, M.
  • Mad, Silveira
  • Laborit Labrada, B.
  • Laplante, M.
  • Ac, Gingras
  • Beauchemin, Nicole
  • Bellmann, K.
  • Schwab, M.
  • De Rooij, Nf
  • Mattana, G.
  • Marki, D.
  • Frolet, N.
  • Vásquez Quintero, Andrés
  • Briand, D.
OrganizationsLocationPeople

article

SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis.

  • Fournier, É.
  • Goudreault, M.
  • Mad, Silveira
  • Laborit Labrada, B.
  • Laplante, M.
  • Ac, Gingras
  • Beauchemin, Nicole
  • Bellmann, K.
  • Marette, A.
  • Schwab, M.
Abstract

We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.

Topics
  • impedance spectroscopy