People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schwab, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis.
Abstract
We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.