Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aldenderfer, Mark

  • Google
  • 1
  • 6
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Macusani obsidian from southern Peru: A characterization of its elemental composition with a demonstration of its ancient use39citations

Places of action

Chart of shared publication
Craig, Nathan
1 / 1 shared
Blanco, Luis
1 / 1 shared
Speakman, Robert
1 / 1 shared
Glascock, Michael
1 / 3 shared
Stanish, Charles
1 / 1 shared
Vega, Margaret
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Craig, Nathan
  • Blanco, Luis
  • Speakman, Robert
  • Glascock, Michael
  • Stanish, Charles
  • Vega, Margaret
OrganizationsLocationPeople

article

Macusani obsidian from southern Peru: A characterization of its elemental composition with a demonstration of its ancient use

  • Craig, Nathan
  • Blanco, Luis
  • Aldenderfer, Mark
  • Speakman, Robert
  • Glascock, Michael
  • Stanish, Charles
  • Vega, Margaret
Abstract

<p>Transparent obsidian artifacts have been reported for the northern Lake Titicaca Basin. Based on instrumental neutron activation analysis (INAA) of these artifacts a distinct chemical group was identified. Yet, the location of the source of transparent obsidian in the southern Andes remained unreported in the archaeological literature. This paper reports on the chemical composition and geographic location of a source of transparent obsidian from the Macusani region of Peru. Through the use of INAA and portable X-ray fluorescence (PXRF) we demonstrate that Macusani obsidian or macusanite comprises (at least) two chemical groups. One of these groups was used for making artifacts during the Archaic Period. Artifacts made of this obsidian were found more than 120 km from the source and yet, one-third of the obsidian artifacts encountered at Macusani were from the non-local source of Chivay which is 215 km to the southwest.</p>

Topics
  • impedance spectroscopy
  • chemical composition
  • activation
  • neutron activation analysis