Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abasht, Behzad

  • Google
  • 2
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The first proof-of-concept of straightforward and ambient-processed CsPbBr3 perovskite light-emitting electrochemical cell1citations
  • 2024Enhanced performance of ambient-air processed CsPbBr3 perovskite light-emitting electrochemical cells via synergistic incorporation of dual additives2citations

Places of action

Chart of shared publication
Asgari, Asgari
2 / 12 shared
Asl, Shahab Khameneh
2 / 3 shared
Aghajani, Hossein
2 / 6 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Asgari, Asgari
  • Asl, Shahab Khameneh
  • Aghajani, Hossein
OrganizationsLocationPeople

article

Enhanced performance of ambient-air processed CsPbBr3 perovskite light-emitting electrochemical cells via synergistic incorporation of dual additives

  • Asgari, Asgari
  • Asl, Shahab Khameneh
  • Abasht, Behzad
  • Aghajani, Hossein
Abstract

<p>Metal halide perovskite light-emitting electrochemical cells (MHP-LECs) are promising due to their facile solution processability and exceptional optoelectrical properties. However, commercialization is hindered by poor thin-film coverage and the need for glovebox processing. This study addresses these issues by incorporating poly(ethylene oxide) (PEO) and potassium hexafluorophosphate (KPF<sub>6</sub>) into cesium lead bromide perovskite (CsPbBr<sub>3</sub>) emitting layers (EML), processed under ambient-air conditions. These perovskite composite thin films were spin-coated on a preheated substrate, and the device structure was ITO/PEDOT:PSS/EML/Al. Notably, the MHP-LEC based on CsPbBr<sub>3</sub>:PEO:KPF<sub>6</sub> (100:65:0.2, weight ratio) exhibited pure-green emission with a peak at 524 nm and a narrow full width at half-maximum of 27 nm. Compared to a reference device (CsPbBr<sub>3</sub>:PEO (100:65, weight ratio)), the new device showed 1.5-, 4-, and 5-fold improvements in current density, electroluminescence (EL) intensity, and lifetime, respectively. These enhancements are attributed to reduced non-radiative current leakage, improved film surface coverage and passivation, and balanced charge carrier injection and transportation. This study offers a straightforward approach for processing CsPbBr<sub>3</sub> thin films under ambient-air conditions, enhancing the EL performance of MHP-LECs.</p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • surface
  • thin film
  • composite
  • Potassium
  • current density