People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kantor, Innokenty
Superconducting and other Innovative Materials and Devices Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Weyl semimetallic phase in high pressure CrSb 2 and structural compression studies of its high pressure polymorphs
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Weyl semimetallic phase in high pressure CrSb$_2$ and structural compression studies of its high pressure polymorphs
- 2024Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2021Size-induced amorphous structure in tungsten oxide nanoparticlescitations
- 2019Electronic origins of the giant volume collapse in the pyrite mineral MnS 2citations
- 2019Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopycitations
- 2019Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cellcitations
- 2019Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cellcitations
- 2018Solving Controversies on the Iron Phase Diagram Under High Pressurecitations
- 2018Electronic origins of the giant volume collapse in the pyrite mineral <math altimg='si0047.gif' overflow='scroll'><msub><mrow><mi>MnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math>citations
- 2016Universal amorphous-amorphous transition in Ge x Se 100−x glasses under pressurecitations
- 2016Thermal decomposition of ammonium hexachloroosmatecitations
- 2016Universal amorphous-amorphous transition in GexSe100−x glasses under pressurecitations
- 2016Universal amorphous-amorphous transition in Ge x Se 100-x glasses under pressurecitations
- 2011Pressure-induced structural phase transition of the iron end-member of ringwoodite (gamma-Fe(2)SiO(4)) investigated by X-ray diffraction and Mossbauer spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
Abstract
In this study, high pressure synchrotron powder X-ray diffraction is used to investigate the compression of two high pressure polymorphs of CrSb2. The first is the CuAl2-type polymorph with an eight-fold coordinated Cr, which can be quenched to ambient conditions from high-pressure high-temperature conditions. The second is the recently discovered MoP2-type polymorph, which is induced by compression at room temperature, with a seven-fold coordinated Cr. Here, the assigned structure is unambiguously confirmed by solving it from single-crystal X-ray diffraction. Furthermore, the electrical properties of the MoP2-type polymorph were investigated theoretically and the resistance calculations under pressure were accompanied by resistance measurements under high pressure on a single crystal of CrSb2. The calculated electronic band structure for the MoP2-type phase is discussed and we show that the polymorph is semimetallic and possesses type-I Weyl points. No further phase transitions were observed for the CuAl2-type structure up to 50 GPa and 40 GPa for the MoP2-type structure. Even though the CuAl2-phase has the highest coordination number of Cr, it was found to be less compressible than the MoP2-phase having a seven-fold coordinated Cr, which was attributed to the longer Cr-Sb distance in the CuAl2-type phase. The discovery of a type-I Weyl semimetallic phase in CrSb2 opens up for discovering other Weyl semimetals in the transition metal di-pnictides under high pressure.