Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zambrano Mera, Dario

  • Google
  • 2
  • 8
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Experimental and computational analysis of stacking fault energy in B-doped Fe50-XMn30Co10Cr10BX multi-principal elements alloys10citations
  • 2019The effect of boron content on the microstructure and mechanical properties of Fe50-XMn30Co10Cr10BX (x=0, 0.3, 0.6 and 1.7 wt%) multi-component alloys prepared by arc-melting36citations

Places of action

Chart of shared publication
Torres- Mejia, Laura Gabriela
1 / 1 shared
Aguilar Hurtado, Jose Yesid
2 / 3 shared
Mujica-Roncery, Lais
1 / 3 shared
Paredes Gil, Katerine
1 / 2 shared
Wang, Bo
1 / 19 shared
Rosenkranz, Andreas
1 / 11 shared
Pantaleone, Stefano
1 / 2 shared
Palma Hillerns, Rodrigo
1 / 2 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Torres- Mejia, Laura Gabriela
  • Aguilar Hurtado, Jose Yesid
  • Mujica-Roncery, Lais
  • Paredes Gil, Katerine
  • Wang, Bo
  • Rosenkranz, Andreas
  • Pantaleone, Stefano
  • Palma Hillerns, Rodrigo
OrganizationsLocationPeople

article

Experimental and computational analysis of stacking fault energy in B-doped Fe50-XMn30Co10Cr10BX multi-principal elements alloys

  • Torres- Mejia, Laura Gabriela
  • Aguilar Hurtado, Jose Yesid
  • Mujica-Roncery, Lais
  • Paredes Gil, Katerine
  • Wang, Bo
  • Zambrano Mera, Dario
  • Rosenkranz, Andreas
  • Pantaleone, Stefano
Abstract

The effect of boron doping in Fe50က00 XMn30Co10Cr10BX multi-component alloys on the resulting stacking fault energy has been experimentally and computationally assessed to understand the alloys’ deformation mechanisms from structural and thermodynamic perspectives. Firstly, the fcc and hcp phases were identified together with stacking faults along their (110) planes using high-resolution transmission electron microscopy. At the same time, they were theoretically predicted through thermodynamic CALPHAD and ab initio calculations. The average stacking fault energy for the boron-free alloy was 23.9 ± 2.4 mJ/m2, suggesting that the deformation mechanisms relate to dislocation slip and deformation twinning. The average stacking fault energy for the highest boron content (5.4 at%) was 50.1 ± 14.1 mJ/m2, indicating dislocation glide as the possible deformation mechanism. The boron content in the solid solution was modelled. The modelling suggested that the presence of Cr-B, Mn-B and Fe-B bonds points towards forming (Cr,Fe)2B borides, which was experimentally confirmed. The borides, fcc phase stability, and the boron in solid solution contribute to increased stacking fault energy, preventing the motion of Shockley partial dislocations and influencing the ε-hcp martensitic transformation.

Topics
  • phase
  • transmission electron microscopy
  • dislocation
  • Boron
  • forming
  • deformation mechanism
  • boride
  • stacking fault
  • phase stability
  • CALPHAD