People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Head, Jake
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023On the origin of cracking in laser powder bed fusion processed LaCe(Fe,Mn,Si)13, and the impact of post-processingcitations
- 2023The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigerationcitations
- 2023Laser powder bed fusion of the Ni-Mn-Sn Heusler alloy for magnetic refrigeration applicationscitations
- 2020Structural, Magnetic, Magnetocaloric, and Magnetostrictive Properties of Pb1-xSrxMnBO4(x = 0, 0.5, and 1.0)citations
Places of action
Organizations | Location | People |
---|
article
On the origin of cracking in laser powder bed fusion processed LaCe(Fe,Mn,Si)13, and the impact of post-processing
Abstract
LaCe(Fe,Mn,Si)<sub>13</sub> magnetocaloric material printed by laser powder bed fusion (LPBF) has a huge potential for magnetic refrigeration. However, high crack and defect susceptibility in LPBF processing remains a limitation of its application. This study optimised the LPBF process parameters for optimally dense blocks. The volumetric energy density condition, E<sub>V</sub> = 250 J/mm<sup>3</sup>, showed the lowest crack density and porosity fraction. The behaviour and mechanism of different cracks and defects were revealed. The lower energy density parameter sets, caused by higher scanning speeds and hatch spacing, lead to the formation of lack-of-fusions. The hot cracking observed was attributed to stress concentration and a stable liquid film. The solid-state cracks observed were expected in the microstructure of the as-fabricated (AF) sample due to the poor toughness of the La/Ce/Si-rich phases. Thermal heat treatment and quenching increased the magnetocaloric effect (MCE) of the AF sample. The maximum magnetic entropy change (∆S<sub>max</sub>) of the heat-treated sample was − 3.68 Jkg<sup>−1</sup>K<sup>−1</sup> at 294 K, when applied to a 1 T field. The Curie temperature (T<sub>c</sub>) (298 K when applied 0.01 T field) and superior MCE make the material an ideal choice for realising room-temperature magnetic refrigeration.