People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheridan, Richard
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Strip Casting of Sm2TM17-Type Alloys for Production of the Metastable SmTM7 Phase
- 2024Development of anisotropic Nd-Fe-B powder from isotropic gas atomized powdercitations
- 2023Strip Casting of Sm2TM17-type Alloys for Production of the Metastable SmTM7 Phase
- 2023On the origin of cracking in laser powder bed fusion processed LaCe(Fe,Mn,Si)13, and the impact of post-processingcitations
- 2023The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigerationcitations
- 2022The effect of grain size on the internal oxidation of Sm2Co17-type permanent magnetscitations
- 2021Microstructure-magnetic shielding development in additively manufactured Ni-Fe-Mo soft magnet alloy in the as fabricated and post-processed conditionscitations
- 2020Limitations in grain boundary processing of the recycled HDDR Nd-Fe-B systemcitations
- 2020Magnetic shielding promotion via the control of magnetic anisotropy and thermal Post processing in laser powder bed fusion processed NiFeMo-based soft magnetcitations
- 2020The extraction of NdFeB magnets from automotive scrap rotors using hydrogencitations
- 2019Magnetic properties of REE fluorcarbonate minerals and their implications for minerals processingcitations
- 2019Coercivity increase of the recycled HDDR Nd-Fe-B powders doped with DyF3 and processed via Spark Plasma Sintering & the effect of thermal treatmentscitations
- 2016REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Reviewcitations
- 2016The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnetscitations
- 2016Novel "Flash Spark Plasma Sintering" method for the rapid fabrication of nanostructured and anisotropic rare-earth lean permanent magnetic materials
- 2014The Effect of Ni Impurities on HDDR Processing of Scrap Sintered NdFeB Magnets
Places of action
Organizations | Location | People |
---|
article
The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigeration
Abstract
This study investigates the effects of heat treatment (HT) time (one, two, and three weeks) on the microstructure and magnetocaloric effect (MCE) of laser powder bed fusion (LPBF) NiMnSn alloys. Increasing the HT time improves chemical homogeneity, and decreases the local misorientation imparted by the LPBF process. This is also associated with an enhancement in the maximum magnetic entropy change (ΔS<sub>m</sub>) values around the martensitic transformation temperature (T<sub>M</sub>), which increases from 0.2 J kg<sup>−1</sup>K<sup>−1</sup> to 0.45 J kg<sup>−1</sup>K<sup>−1</sup> under 1 T applied magnetic field. However, theΔS<sub>m</sub>of the one-week HTed sample around the curie temperature (T<sub>c</sub>) (0.90 J kg<sup>−1</sup>K<sup>−1 </sup>at 315 K) is slightly lower than the two weeks and three weeks HTed samples (0.99 J kg<sup>−1</sup>K<sup>−1</sup> at 320 K, 0.94 J kg<sup>−1</sup>K<sup>−1</sup> at 320 K), respectively.