People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kubasek, Jiri
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Microstructural, corrosion and mechanical properties of a WE43 alloy: conventional extrusion versus SPDcitations
- 2023Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billetcitations
- 2022The Effect of Extrusion Ratio on the Corrosion Resistance of Ultrafine-Grained Mg-4Li-3Al-Zn Alloy Deformed Using Extrusion with a Forward-Backward Oscillating Diecitations
- 2022Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo)citations
- 2021Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zncitations
- 2015Corrosion Behaviour of Magnesium Lithium Alloys in NaCl Solutioncitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billet
Abstract
We have investigated the microstructure, mechanical and corrosion properties of an AZ61 alloy that was extruded using a newly developed technique with an oscillating die (KoBo). The KoBo method allows the extrusion of AZ61 without preheating of the initial billet at high deformation ratios. The combined SEM, EBSD and TEM investigations of the microstructure revealed significant microstructure refinement as well as changes to the intensity of the texture and the distribution of the Mg<sub>17</sub>Al<sub>12</sub> phase. The size of grains was reduced from coarse (d<sub>avg</sub> 20.4 µm for the initial billet) to fine (d<sub>avg</sub> 6.6 µm for the extrusion ratio of R<sub>1</sub> 7:1 and d<sub>avg</sub> 4.5 µm for R<sub>2</sub> 10:1). However, in this study, it does not improve the strength and the corrosion properties of the AZ61 alloys. The continuously precipitated Mg<sub>17</sub>Al<sub>12</sub> phase along the grain boundaries overwhelms the strengthening due to grain refinement. Intense corrosion occurs in the case of the KoBo-extruded samples, and the main mechanism of the corrosion is microgalvanic, taking place between the matrix and the Mg<sub>17</sub>Al<sub>12</sub> formed at grain boundaries.