People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Łojkowski, Maciej
Bialystok University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billetcitations
- 2023Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation
- 2019Tuning the Wettability of a Thin Polymer Film by Gradually Changing the Geometry of Nanoscale Pore Edgescitations
- 2018Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applicationscitations
- 2017Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ionscitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billet
Abstract
We have investigated the microstructure, mechanical and corrosion properties of an AZ61 alloy that was extruded using a newly developed technique with an oscillating die (KoBo). The KoBo method allows the extrusion of AZ61 without preheating of the initial billet at high deformation ratios. The combined SEM, EBSD and TEM investigations of the microstructure revealed significant microstructure refinement as well as changes to the intensity of the texture and the distribution of the Mg<sub>17</sub>Al<sub>12</sub> phase. The size of grains was reduced from coarse (d<sub>avg</sub> 20.4 µm for the initial billet) to fine (d<sub>avg</sub> 6.6 µm for the extrusion ratio of R<sub>1</sub> 7:1 and d<sub>avg</sub> 4.5 µm for R<sub>2</sub> 10:1). However, in this study, it does not improve the strength and the corrosion properties of the AZ61 alloys. The continuously precipitated Mg<sub>17</sub>Al<sub>12</sub> phase along the grain boundaries overwhelms the strengthening due to grain refinement. Intense corrosion occurs in the case of the KoBo-extruded samples, and the main mechanism of the corrosion is microgalvanic, taking place between the matrix and the Mg<sub>17</sub>Al<sub>12</sub> formed at grain boundaries.