People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Majchrowicz, Kamil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubescitations
- 2024A novel approach to enhance mechanical properties of Ti substrates for biomedical applicationscitations
- 2023The influence of microstructure and texture on the hardening by annealing effect in cold-rolled titaniumcitations
- 2022Comparison of Microstructure, Texture, and Mechanical Properties of TZ61 and AZ61 Mg Alloys Processed by Differential Speed Rollingcitations
- 2022Surface Properties and Mechanical Performance of Ti-Based Dental Materials: Comparative Effect of Valve Alloying Elements and Structural Defectscitations
- 2022The Influence of Heat Treatment on the Mechanical Properties and Corrosion Resistance of the Ultrafine-Grained AA7075 Obtained by Hydrostatic Extrusioncitations
- 2022The Impact of Retained Austenite on the Mechanical Properties of Bainitic and Dual Phase Steelscitations
- 2021Studies of Bainitic Steel for Rail Applications Based on Carbide-Free, Low-Alloy Steelcitations
- 2021Microstructure, Texture and Mechanical Properties of Mg-6Sn Alloy Processed by Differential Speed Rollingcitations
- 2021Influence of microstructural features on the growth of nanotubular oxide layers on β-phase Ti-24Nb-4Zr-8Sn and α + β-phase Ti-13Nb-13Zr alloyscitations
- 2019Exploring the susceptibility of P110 pipeline steel to stress corrosion cracking in CO2-rich environmentscitations
- 2019Microstructure and mechanical properties of Ti–Re alloys manufactured by selective laser meltingcitations
- 2018Hot Corrosion of Ti–Re Alloys Fabricated by Selective Laser Meltingcitations
- 2018The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Meltingcitations
- 2018Fatigue behavior of 6xxx aluminum alloy processed by severe plastic deformation
- 2018Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusioncitations
Places of action
Organizations | Location | People |
---|
article
The influence of microstructure and texture on the hardening by annealing effect in cold-rolled titanium
Abstract
The purpose of this study was to compare the influence of microstructural and textural changes on thehardening by annealing effect in cold-rolled titanium. Ultrafine-grained (UFG) Ti Grade 2 was produced bymulti-pass cold rolling (or warm rolling at 400 °C at the final stage) to different thickness reductions (90%,95% and 97%) aimed at varying both the microstructural features of the material (dislocation density, grainsize distribution and grain boundary characteristics) and its texture (the intensity and volume fraction oftexture components). The hardening effect of UFG Ti Grade 2 sheets was obtained by a short-time annealingat 250 °C for 15 min. The highest strengthening, of about 4–5%, was observed for the UFG Ti Grade 2 sheetrolled to 90%; the strengthening gradually decreased for higher thickness reductions (down to ∼ 2% for 97%).The texture intensity and volume fractions of texture components for the annealed UFG Ti Grade 2 sheetswere very close to their as-rolled counterparts, so this did not demonstrate any clear reason for thehardening effect. Instead, the dislocation substructure recovered during annealing at 250 °C, i.e. the dislocationdensity declined significantly, the remaining dislocations became rearranged, and it was easier todifferentiate more nanosized subgrains of about 50–150 nm. The hardening by annealing effect was a resultof the annihilation of mobile dislocations and the ordering of the dislocation substructure, mostly withincoarse grains (> 500 nm). The level of strengthening by low-temperature annealing was mainly affected bythe fraction of coarse grains with a tangled-dislocation substructure in the as-rolled state, i.e. a higherfraction of coarse grains favored more pronounced strengthening. These observations seem to be verypromising for optimizing the cold rolling process and short-time annealing of the UFG Ti Grade 2 sheets,which could be a simple and cost-effective way of enhancing their mechanical properties.