People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kamnis, Spyros
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Computational and experimental investigation of the strain rate sensitivity of small punch testing of the high-entropy alloy CoCrFeMnNicitations
- 2022A Critical Review on Al-Co Alloys: Fabrication Routes, Microstructural Evolution and Propertiescitations
- 2022Modification of Cantor High Entropy Alloy by the Addition of Mo and Nb: Microstructure Evaluation, Nanoindentation-Based Mechanical Properties, and Sliding Wear Response Assessmentcitations
- 2022Computational and experimental investigation of the strain rate sensitivity of small punch testing of the high-entropy alloy CoCrFeMnNicitations
- 2017Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part B: Influence of kinematic spray parameters on microstructure, phase composition and decarburization of the coatingscitations
Places of action
Organizations | Location | People |
---|
article
Computational and experimental investigation of the strain rate sensitivity of small punch testing of the high-entropy alloy CoCrFeMnNi
Abstract
The suitability of determining the strain rate sensitivity (SRS) of the CoCrFeMnNi high-entropy alloy (HEA) by small punch (SP) testing has been assessed at displacement rates ranging from 0.2 to 2mm∙min-1. The stress was found to increase as the displacement rate was raised from 0.2 to 2mm∙min-1, whereas the plastic strain distributions were similar in all cases. However, for a higher displacement rate of 10mm∙min-1, the sample was found to exhibit a drop in strength and ductility attributed to casting defects. The strain-rate sensitivity exponent (m) was found to be 0.1387 whilst the Finite Element Analysis (FEA) simulations predicted a slightly smaller value of 0.1313. This latter value is closer to m = 0.091 obtained from nanoindentation strain rate jump tests since the results are insensitive to the presence of small casting defects. The relationship between the experimental and the empirically derived predicted properties from the SP tests revealed a high level of agreement for maximum stress properties. The properties predicted at 2mm∙min-1 (R2 = 0.96) offered a stronger fit than at 0.5mm∙min-1 (R2 = 0.92).