People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Winkler, Robert
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024A Review on Direct-Write Nanoprinting of Functional 3D Structures with Focused Electron Beamscitations
- 2023Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printingcitations
- 2023Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model Systemcitations
- 2022Combining AFM with FIB/SEM in Nanofabrication
- 2022A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloyscitations
- 2022Direct-Write 3D Nanoprinting of High-Resolution Magnetic Force Microscopy Nanoprobes
- 2019In situ real-time annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced depositioncitations
- 2019Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomographycitations
- 2014The nanoscale implications of a molecular gas beam during electron beam induced depositioncitations
- 2013Chemical degradation and morphological instabilities during focused ion beam prototyping of polymerscitations
Places of action
Organizations | Location | People |
---|
article
A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloys
Abstract
Magnetic spinodal alloys are ideal materials for studying the relationship between the microstructure of an alloy and its magnetic properties. To unravel this relation, a profound knowledge of the chemical as well as the magnetic microstructure, i.e. the magnetic domain structure, is necessary. However, mapping the magnetic domain structure is rarely accomplished even though it is of major interest for both, fundamental research as well as applications using such alloys.<br/><br/>In this study, the magnetic domain structure as well as the evolution of the microstructure of spinodally decomposed Cu52Ni34Fe14 alloys is investigated with various modern (scanning) transmission electron microscopy ((S)TEM) methods. The magnetic domain structure was mapped using differential phase contrast imaging (STEM DPC) and magnetic-force microscopy (MFM). The chemical microstructure was determined using high-angle annular dark field imaging (HAADF) and energy-dispersive X-ray spectroscopy (EDXS) elemental mapping.