Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mørch, Mathias I.

  • Google
  • 10
  • 25
  • 48

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Study2citations
  • 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Study2citations
  • 2023Sintering in seconds, elucidated by millisecond in situ diffraction3citations
  • 2022Exploiting different morphologies of non-ferromagnetic interacting precursor’s for preparation of hexaferrite magnets10citations
  • 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnets9citations
  • 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnetscitations
  • 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnetscitations
  • 2019Novel fast heating furnaces for in situ powder neutron diffractioncitations
  • 2019Structure and magnetic properties of W-type hexaferrites22citations
  • 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compoundcitations

Places of action

Chart of shared publication
Gjørup, Frederik Holm
6 / 17 shared
Christensen, Mogens
10 / 53 shared
Vijayan, Harikrishnan
2 / 3 shared
Shyam, Priyank
5 / 9 shared
Jørgensen, Mads Ry Vogel
2 / 24 shared
Laursen, Amalie P.
3 / 4 shared
Frandsen, Jens Plum
1 / 1 shared
Gjørup, Frederik H.
1 / 3 shared
Frandsen, Jens P.
1 / 1 shared
Jørgensen, Mads R. V.
1 / 6 shared
Kantor, Innokenty
1 / 19 shared
Eikeland, Anna Z.
2 / 2 shared
Pillai, Harikrishnan Vijayan
2 / 2 shared
Povlsen, Amalie
3 / 3 shared
Thomas-Hunt, Jack
1 / 2 shared
Mamakhel, Aref
1 / 21 shared
Saura-Múzquiz, Matilde
2 / 15 shared
Eikeland, Anna Zink
1 / 3 shared
Ahlburg, Jakob Voldum
4 / 21 shared
Stingaciu, Marian
2 / 8 shared
Kessler, Tommy Ole
4 / 4 shared
Knudsen, Cecilie Grønvaldt
2 / 2 shared
Vijayan Pillai, Harikrishnan
1 / 1 shared
Smith, Ron
2 / 3 shared
Henry, Paul
2 / 6 shared
Chart of publication period
2024
2023
2022
2021
2019

Co-Authors (by relevance)

  • Gjørup, Frederik Holm
  • Christensen, Mogens
  • Vijayan, Harikrishnan
  • Shyam, Priyank
  • Jørgensen, Mads Ry Vogel
  • Laursen, Amalie P.
  • Frandsen, Jens Plum
  • Gjørup, Frederik H.
  • Frandsen, Jens P.
  • Jørgensen, Mads R. V.
  • Kantor, Innokenty
  • Eikeland, Anna Z.
  • Pillai, Harikrishnan Vijayan
  • Povlsen, Amalie
  • Thomas-Hunt, Jack
  • Mamakhel, Aref
  • Saura-Múzquiz, Matilde
  • Eikeland, Anna Zink
  • Ahlburg, Jakob Voldum
  • Stingaciu, Marian
  • Kessler, Tommy Ole
  • Knudsen, Cecilie Grønvaldt
  • Vijayan Pillai, Harikrishnan
  • Smith, Ron
  • Henry, Paul
OrganizationsLocationPeople

article

Exploiting different morphologies of non-ferromagnetic interacting precursor’s for preparation of hexaferrite magnets

  • Pillai, Harikrishnan Vijayan
  • Mørch, Mathias I.
  • Christensen, Mogens
  • Povlsen, Amalie
  • Thomas-Hunt, Jack
Abstract

Sintered cold compacted hexaferrite magnets with appreciable magnetic properties and crystallite align- ment were made from non-magnetic precursors without applying an external magnetic field. This work presents a novel approach employing non-ferromagnetic interacting precursors comprising of platelet shaped six-line ferrihydrite and needle shaped goethite nanoparticles. A hydrothermal synthesis route was employed to produce platelet shaped six-line ferrihydrite of ~5 nm thickness. Needle shaped goethite na- noparticles were likewise prepared by hydrothermal synthesis with apparent dimensions of ~10 × 27 × 10 nm3 extracted from X-ray powder diffraction data. The powder diffraction Rietveld modelling also revealed the presence of an amorphous phase in the six-line ferrihydrite and a SrCO3 impurity. The presence of needle shaped goethite nanoparticles improves the alignment of magnets, while retaining the coercivity (Hc), in contrast to hexaferrite magnets prepared from six-line ferrihydrite by spark plasma sintering (SPS). The non-ferromagnetically interacting precursors were directly converted to the SrFe12O19 magnets by pressing them with conventional compaction technique followed by subsequent sintering of the pellets. Decoupling the pressing and sintering step is interesting for industrial production of magnets. The hexaferrite magnets prepared displayed good combination of saturation magnetization Ms = 70 Am2/kg and coercivity Hc = 297 kA/m with some degree of alignment of the crystallites Mr/Ms = 0.71. This procedure exploits the anisotropic shape of the crystallites and compaction using uniaxial pressure followed by sin- tering into aligned bulk magnets. Two sets of hexaferrite bulk magnets were prepared by sintering at 900 °C and held for 2 h and 1050 °C with a holding time 0 min. The hexaferrite magnets sintered at 1050 °C were subjected to transmission pole figure analysis. The texture index for each pellet were extracted from the pole figure analysis. Employing needle shaped goethite nanoparticles actually enhanced the alignment of the hexaferrite magnets. The magnet obtained from only six-line ferrihydrite displayed only a slightly improved texture index when compared with mixture of six-line ferrihydrite and goethite nanoparticles.

Topics
  • nanoparticle
  • impedance spectroscopy
  • amorphous
  • phase
  • anisotropic
  • mass spectrometry
  • texture
  • magnetization
  • sintering
  • saturation magnetization
  • coercivity
  • aligned