People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cox, Sophie C.
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2022Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4Vcitations
- 2022Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repaircitations
- 2022The influence of thermal oxidation on the microstructure, fatigue properties, tribological and in vitro behaviour of laser powder bed fusion manufactured Ti-34 Nb-13Ta-5Zr-0.2O alloycitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2022Photocurable antimicrobial silk-based hydrogels for corneal repaircitations
- 2021Surface finish of additively manufactured metalscitations
- 2021Biofilm viability checkercitations
- 2020Optimizing the antimicrobial performance of metallic glass composites through surface texturingcitations
- 2020Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applicationscitations
- 2020Selective laser melting of ti-6al-4vcitations
- 2019Dynamic viscoelastic characterisation of human osteochondral tissuecitations
- 2018Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstructioncitations
- 2018The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral corescitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implantscitations
Places of action
Organizations | Location | People |
---|
document
Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusion
Abstract
Additive manufacturing (AM) of customised vascular or peripheral stents is of great potential for surgeons and patients, enabling the patients to have customised stents and achieving better outcomes from stenting procedures, with further advantages of having a resource efficient manufacturing process. In this study, the potential for AM of superelastic NiTi-based shape memory alloy (Nitinol) stents was investigated. Two stent designs, which are used for the treatment of complex peripheral artery stenosis in the lower limbs, were studied. Laser Powder Bed Fusion (LPBF) of two stent designs was studied to investigate the impact of the process parameters on the stent geometry, strut size, structural integrity and the phase transformations. The study demonstrated the successful manufacture of Nitinol stents via LPBF, with strut sizes in the range between 250 µm and ≈ 560 µm. The elastic modulus of the stents was between 56 and 73 GPa, which matches well with the elastic modulus of standard austenitic Nitinol. Chemical etching was used to reduce the strut diameter and to remove the partially melted particles. It was shown that the laser energy input has a vital role in controlling the Ni-evaporation and the subsequent changes in the transformation temperatures, as well as the morphology of the stents. The lower energy input results in a reduced Ni-evaporation, maintaining the austenite finish temperature at the expected range, in addition to generating a good build morphology.