People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nečas, David
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloyscitations
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2024Harmonizing microstructures and enhancing mechanical resiliencecitations
- 2023Nanograined Zinc Alloys with Improved Mechanical Properties Prepared by Powder Metallurgy
- 2023The Effect of Treatment of Powder Precursor on the Properties of Compacted Mg-4Y-3Re Alloy
- 2023Effect of Laser Remelting of Fe-Based Thermally Sprayed Coating on AZ91 Magnesium Alloy on Its Structural and Tribological Propertiescitations
- 2023Depth profiling of thin plasma-polymerized amine films using GDOES in an Ar-O-2 plasmacitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2022Microstructure and Phase Composition of thin Protective Layers of Titanium Aluminides Prepared by Self-Propagating High-Temperature Synthesis (SHS) for Ti-6Al-4V Alloycitations
- 2022Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2021The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sinteringcitations
- 2020Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup ; Tření v náhradách kyčelního kloubu v průběhu záběhové fáze může být významně sníženo: Vliv texturované kloubní jamkycitations
- 2017Application of imaging spectroscopic reflectometry for characterization of gold reduction from organometallic compound by means of plasma jet technology ; Využití zobrazovací spektroskopické reflektometrie pro charakterizaci redukce zlata z organokovových látek pomocí technologie plasmového paprskucitations
Places of action
Organizations | Location | People |
---|
article
The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion
Abstract
Zinc-based alloys containing elements well-tolerated by the organism (Mg, Ca, Sr) are considered as perspective biodegradable materials for an application like medical devices such as fixations of fractured bones or even stents. In the presented paper we characterize the relations between microstructure and mechanical properties of extruded Zn-0.8Mg-0.2 Sr alloy (wt%) depending on various parameters like extrusion temperature (150–300 °C) and ratio (11 or 25). Typical analysis including SEM with EBSD and mechanical tests indicate a strong dependence of obtained data on both extrusion temperature and ratio. Relatively wide range of elongation to fracture (2–22%) and anisotropy in compression yield strengths regarding loading direction (50–150 MPa) are explained by the huge effect of grain size, material texture and also the existence of dislocation substructures in materials extruded at elevated temperatures. Based on obtained results, appropriate extrusion conditions (200 °C, extrusion ratio 25) are suggested to reach the combination of superior mechanical properties 244 MPa, 324 MPa and 22% for tensile yield strength, ultimate tensile strength and elongation to fracture, respectively. © 2022