People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sivaswamy, Giribaskar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Effect of heat treatments on microstructure and mechanical properties of low-cost Ti-6Al-4V alloy produced by thermo-mechanical powder consolidation routecitations
- 2023Miniaturised experimental simulation of open-die forgingcitations
- 2022An innovative constitutive material model for predicting high temperature flow behaviour of inconel 625 alloycitations
- 2022An analysis of the forgeability of Ti-10V-2Fe-3Al β titanium alloy using a combined Estrin Mecking and Avrami material constitutive modelcitations
- 2021A novel cyclic thermal treatment for enhanced globularisation kinetics in Ti-6Al-4V alloycitations
- 2021Effect of texture and mechanical anisotropy on flow behaviour in Ti-6Al-4V alloy under superplastic forming conditionscitations
- 2021A new route for developing ultrafine-grained Al alloy strips using repetitive bending under tensioncitations
- 2020Formability of AA-7075 sheets subjected to repetitive bending under tension
- 2020Mechanical response and microstructure evolution of commercially pure titanium subjected to repetitive bending under tensioncitations
- 2018Design and validation of a fixture for positive incremental sheet formingcitations
- 2018Effect of deformation-induced adiabatic heating on microstructure evolution during open-die screw press forging of Ti-6Al-4V.
- 2017Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titaniumcitations
- 2017Microstructure and mechanical properties of Al-1050 during incremental ECAPcitations
- 2014Complex Incremental Sheet Forming Using Back Die Support on Aluminium 2024, 5083 and 7075 alloyscitations
- 2014Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
A novel cyclic thermal treatment for enhanced globularisation kinetics in Ti-6Al-4V alloy
Abstract
<p>Secondary hot-working on dual phase titanium alloys are essential for microstructural modification to tailor mechanical properties, which is typically challenging due to a narrow available processing window, especially during industrial scale manufacturing. Poor workability, strain induced porosity and adiabatic temperature rise in α + β phase region (i.e., sub-transus) are some of the main challenges faced. Cyclic thermal treatment (CTT) is an emerging technology showing potentials for microstructure modification (i.e., globularisation) in Ti‐6Al‐4V with significantly reduced mechanical work in the α + β region. This study summarises the results of CTT investigations conducted on a wrought Ti‐6Al‐4V alloy subjected to various thermo-mechanical conditions to develop different initial microstructures. Samples with uniform strain distributions were extracted from pre-forged samples and subsequently subjected to CTT using both conventional electric furnace (i.e., for slow heating and cooling rates), and induction heating (i.e., for faster heating and cooling rates). CTT of the samples forged at sub-transus temperature in conventional furnace led to maximum (i.e. ~100%) globularisation and significant coarsening of α grains, resulting in an equiaxed bimodal microstructure. On the other hand, CTT with induction heating method has resulted in a maximum of 80% globularisation fraction in samples forged to 60% reduction, and ~35% globularisation fraction in those forged to 20% reduction. The globularisation mechanisms during CTT of the sub-transus forged samples was dominated by the boundary splitting and thermal grooving. A Johnson-Mehl-Avarmi-Kolmogorov (JMAK) based model has been developed to predict the evolution of globularisation and grain growth during CTT. The developed JMAK model was then successfully incorporated into DEFORM® software as post-processing user subroutines. The predicted microstructure evolution by Finite Element (FE) simulations shown a good convergence towards the experimentally measured data following CTT.</p>