People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morellon, L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Indium segregation in Gd-5(Si, Ge)(4) magnetocaloric materialscitations
- 2022Indium segregation in Gd-5(Si, Ge)(4) magnetocaloric materialscitations
- 2017On the nature of the (de)coupling of the magnetostructural transition in Er5Si4citations
- 20121s2p resonant inelastic x-ray scattering-magnetic circular dichroism: A sensitive probe of 3d magnetic moments using hard x-ray photonscitations
- 2009Magnetic and crystal structure of Ho-5(SixGe(1-x))(4) studied by neutron diffractioncitations
- 2005Multi-step and anomalous reproducible behaviour of the electrical resistivity near the first-order magnetostructural transition of Gd-5(Si0.1Ge0.9)(4)citations
- 2003High-coercivity ultralight transparent magnetscitations
Places of action
Organizations | Location | People |
---|
article
Indium segregation in Gd-5(Si, Ge)(4) magnetocaloric materials
Abstract
Chemical substitution is one of the most efficient tools to tune and optimize magnetic and magnetocaloric properties of the giant magnetocaloric materials. In particular, Indium substitutions could be useful both for tuning properties of these interesting intermetallic materials and to unveil their local-scale behavior across the magnetostructural transition via hyperfine techniques. Hence, in order to investigate the effect of Indium additions on the crystal structure, micro-structure, magnetic and magnetocaloric properties, a series of In-containing samples derived from the base Gd5Si1.2Ge2.8 stoichiometry were prepared. The major findings are that while In is insoluble in the 5: 4 phase, it will instead promote the emergence of the impurity 5: 3 phase and segregates into this phase. Hence, In leads to major crystallographic changes, which enhance atomic disorder and disrupt the Si to Ge ratio in the 5: 4 phase. Subsequently, a higher 5: 4 unit cell volume and a lower magnetic ordering temperature are found in the In-substituted samples. Finally, the magnetocaloric properties of the In-substituted samples reveal a detrimental effect on the maximum magnetic entropy change.