People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ross, Glenn
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Scaling of piezoelectric in-plane NEMS : Towards nanoscale integration of AlN-based transducer on vertical sidewallscitations
- 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integration
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2024Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfacescitations
- 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnectscitations
- 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICscitations
- 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °Ccitations
- 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristicscitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bondingcitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stresscitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding processcitations
- 2022Aluminium corrosion in power semiconductor devicescitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Wafer Level Solid Liquid Interdiffusion Bondingcitations
- 2021Stability and residual stresses of sputtered wurtzite AlScN thin filmscitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021A humidity-induced novel failure mechanism in power semiconductor diodescitations
- 2021Low-temperature Metal Bonding for Optical Device Packagingcitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structurecitations
- 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfacescitations
- 2019Intermetallic Void Formation in Cu-Sn Micro-Connects
- 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formationcitations
- 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMScitations
- 2018The effect of platinum contact metallization on Cu/Sn bondingcitations
- 2018Stability of Piezoelectric Al1-xScxN Thin Films
- 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connectscitations
- 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connectscitations
- 2017Key parameters influencing Cu-Sn interfacial void formation
- 2016Void formation and its impact on Cu-Sn intermetallic compound formationcitations
- 2014Void formation in Cu-Sn SLID bonding for MEMScitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bonding
Abstract
Funding Information: This work was supported by the Innovation Funding Agency Business Finland. The work was conducted as part of the ?Silicon microfabrication platform development for next generation products - Beyond SOI? project (1364/31/2019). We acknowledge the provision of facilities and technical support by Aalto University at OtaNano - Nanomicroscopy Center (Aalto- NMC). Publisher Copyright: © 2021 Elsevier B.V. ; Solid-liquid interdiffusion (SLID) bonding is one of the most promising novel methods for micro-(opto)-electromechanical system (MEMS/MOEMS) wafer-level packaging. However, the current SLID bonding solutions require the use of an electrochemical deposition method for MEMS/MOEMS wafers as well, which significantly complicates the process integration options. Hence, this work proposes Co as a potential option for compatible contact metallization on MEMS/MOEMS wafers to utilize mature Cu–Sn SLID bonding. The focus of this study is on gaining a fundamental understanding of the microstructural formation and evolution of Co substrates in contact with Cu–Sn electroplated silicon wafers and identifying possible failures of joints during bonding, which are prerequisites for guaranteeing devices’ manufacturability, functionality, and long-term reliability. The effect of bonding time and temperature on the microstructural evolution and phase formation of Co substrates in contact with Cu–Sn electroplated silicon chips was investigated. Moreover, a phase diagram of the Co–Cu–Sn ternary system was thermodynamically evaluated based on experimental data. Samples were successfully bonded at 250 °C for 1500 and 2000 s and at 280 °C for 1000 s. The main interfacial intermetallic compounds were identified as (Cu,Co)6Sn5, Cu3Sn, and (Co,Cu)Sn3. Co stabilized the high-temperature hexagonal (η) Cu6Sn5 phase down to room temperature. Bond detachment was observed when applying either a higher bonding temperature or a longer bonding time. Two critical factors that cause detachment during bonding were recognized: first, ...