People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheridan, Richard
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Strip Casting of Sm2TM17-Type Alloys for Production of the Metastable SmTM7 Phase
- 2024Development of anisotropic Nd-Fe-B powder from isotropic gas atomized powdercitations
- 2023Strip Casting of Sm2TM17-type Alloys for Production of the Metastable SmTM7 Phase
- 2023On the origin of cracking in laser powder bed fusion processed LaCe(Fe,Mn,Si)13, and the impact of post-processingcitations
- 2023The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigerationcitations
- 2022The effect of grain size on the internal oxidation of Sm2Co17-type permanent magnetscitations
- 2021Microstructure-magnetic shielding development in additively manufactured Ni-Fe-Mo soft magnet alloy in the as fabricated and post-processed conditionscitations
- 2020Limitations in grain boundary processing of the recycled HDDR Nd-Fe-B systemcitations
- 2020Magnetic shielding promotion via the control of magnetic anisotropy and thermal Post processing in laser powder bed fusion processed NiFeMo-based soft magnetcitations
- 2020The extraction of NdFeB magnets from automotive scrap rotors using hydrogencitations
- 2019Magnetic properties of REE fluorcarbonate minerals and their implications for minerals processingcitations
- 2019Coercivity increase of the recycled HDDR Nd-Fe-B powders doped with DyF3 and processed via Spark Plasma Sintering & the effect of thermal treatmentscitations
- 2016REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Reviewcitations
- 2016The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnetscitations
- 2016Novel "Flash Spark Plasma Sintering" method for the rapid fabrication of nanostructured and anisotropic rare-earth lean permanent magnetic materials
- 2014The Effect of Ni Impurities on HDDR Processing of Scrap Sintered NdFeB Magnets
Places of action
Organizations | Location | People |
---|
article
Microstructure-magnetic shielding development in additively manufactured Ni-Fe-Mo soft magnet alloy in the as fabricated and post-processed conditions
Abstract
<p>This study introduces a deep analysis, which correlates the metallurgical characters with the magnetic properties in laser powder bed fusion processed Ni-Fe-Mo, to produce 3D prototypes with maximum magnetic shielding performance for ultra-sensitive quantum-based systems. The study conducts a sequenced plan of optimising the magnetic properties via microstructure density control, controlling the magnetic anisotropy, before applying heat treatment (HT) and hot isostatic pressing (HIP) post-processes. This is also considering delivering effective mechanical properties. The magnetic properties optimisation was performed via laser parametric study, which found that the sample built with laser energy density E = 4.68 J/mm<sup>2</sup> achieves the best soft magnetic and mechanical results due to the lowest defects. However, the obtained magnetic properties are still poor, due to the (001) rich grain orientation, which parallels the hard axis of magnetisation<100> in this alloy. It was found that tilting the crystallographic orientation of the as fabricated (AF) optimised condition with 45˚ and 35˚, with respect to the build direction, improves the soft magnetic properties, as these angles correspond to the easy axes of magnetisation<110>and<111>, respectively, allowing the grain orientation in the same directions. The magnetic properties are further promoted with HT and HIP post-processes application. The magnetic shielding results of hollow tubes, built with the same optimised condition, confirmed the magnetic behaviour of the bulk coupons, achieving 83% of the commercial magnetic shielding.</p>