Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Jiansheng

  • Google
  • 2
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Influence of the Cover Plate Thickness on the Ballistic Penetration of Re-entrant Auxetic Structures8citations
  • 2021Microstructure and hardness variation of additively manufactured Ti-Ni-C functionally graded composites9citations

Places of action

Chart of shared publication
Weerasinghe, Dakshitha
1 / 1 shared
Mohotti, Damith
1 / 1 shared
Wang, Hongxu
1 / 2 shared
Hazell, Paul J.
1 / 3 shared
Escobedo, J. P.
1 / 1 shared
Cavenagh, Robert
1 / 1 shared
Escobedo-Diaz, Juan Pablo
1 / 1 shared
Morozov, Evgeny
1 / 1 shared
East, Daniel
1 / 7 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Weerasinghe, Dakshitha
  • Mohotti, Damith
  • Wang, Hongxu
  • Hazell, Paul J.
  • Escobedo, J. P.
  • Cavenagh, Robert
  • Escobedo-Diaz, Juan Pablo
  • Morozov, Evgeny
  • East, Daniel
OrganizationsLocationPeople

article

Microstructure and hardness variation of additively manufactured Ti-Ni-C functionally graded composites

  • Escobedo-Diaz, Juan Pablo
  • Morozov, Evgeny
  • Wang, Jiansheng
  • East, Daniel
Abstract

Ti–Ni–C functionally graded composites were fabricated using a LENS™ additive manufacturing system. A vertical chemical gradient was created by varying powder inputs linearly from Ti–6Al–4V at the bottom layer to approximately 40%wt Ni coated graphite at the top layer. Our results show that the phase constitution, microstructure, and hardness of the composites gradually change with chemical composition. With an increasing Ni coated graphite content, the in-situ synthesised TiC precipitates are distributed more densely, and their morphologies change from tiny flakes to dendrites and finally become coralloid structures. Simultaneously, the hardness of the graded composite increases with the addition of Ni coated graphite

Topics
  • phase
  • composite
  • hardness
  • chemical composition
  • precipitate
  • additive manufacturing