People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smetana, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Four ternary silicides in the La-Ni-Si system: from polyanionic layers to frameworkscitations
- 2021Crystal and electronic structures of the new ternary silicide Sc12Co41.8Si30.2citations
- 2021Investigation in the ternary Ta-Ni-P systemcitations
- 2020Metamagnetic transition, magnetocaloric effect and electronic structure of the rare-earth anti-perovskite SnOEu3citations
- 2020Magnetic phase transitions in Eu(Co1-x Nix)2-y As2 single crystalscitations
- 2020Ferromagnetic cluster-glass phase in Ca(Co1-xIrx)2-yAs2 crystalscitations
- 2019Helical antiferromagnetic ordering in EuNi1.95As2 single crystalscitations
- 2019Non-Fermi-liquid types of behavior associated with a magnetic quantum critical point in Sr(Co1-xNix)2As2 single crystalscitations
- 2018Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2-yAs2citations
Places of action
Organizations | Location | People |
---|
article
Investigation in the ternary Ta-Ni-P system
Abstract
<p>The solid state phase diagram for the ternary Ta-Ni-P system was established at T=1070 K in the region of up to 67 at% of P by means of X-ray powder diffraction methods (PXRD). Six ternary compounds, namely Ta<sub>4</sub>NiP (Nb<sub>4</sub>CoSi-type), Ta<sub>1.10–0.82</sub>Ni<sub>0.90–1.18</sub>P (TiNiSi-type), TaNiP<sub>2</sub> (NbNiP<sub>2</sub>-type), Ta<sub>5.00–4.81</sub>Ni<sub>4.00–4.19</sub>P<sub>4</sub> (Nb<sub>5</sub>Cu<sub>4</sub>Si<sub>4</sub>-type), TaNi<sub>2</sub>P (own structure type) and Ta<sub>1–0.08(1)</sub>Ni<sub>0.08(1)</sub>P<sub>2</sub> (OsGe<sub>2</sub>-type) have been confirmed to exist. Rather minor Ta/Ni homogeneity ranges have been found for α-Ta<sub>3-x</sub>Ni<sub>x</sub>P (x=0.2) (Ті<sub>3</sub>Р-type), Ta<sub>1-x</sub>Ni<sub>x</sub>P (x=0.18) (NbAs-type), Ni<sub>3-x</sub>Ta<sub>x</sub>P (x=0.2) (Ni<sub>3</sub>P-type) and Ni<sub>2-x</sub>Ta<sub>x</sub>P (x=0.25) (Fe<sub>2</sub>P-type). The crystal structure of Ta<sub>4.811(9)</sub>Ni<sub>4.189(9)</sub>P<sub>4</sub> has been refined from single crystal X-ray diffraction data (Nb<sub>5</sub>Cu<sub>4</sub>Si<sub>4</sub>-type, space group I4/m, a =9.8474(17), c=3.5182(7) Å, R1=0.0283, wR2=0.0470), while that of the new TaNi<sub>2</sub>P compound was determined by means of PXRD. This phosphide crystalizes in its own structure type (space group Pnma, a=8.3588(3), b=3.5208(1), c=6.7051(3) Å, R<sub>І</sub>=0.044, R<sub>Р</sub>=0.161). A new isostructural Fe-compound, TaFe<sub>2</sub>P (a=8.358(2), b=3.5194(7), c=6.703(1) Å), was also synthetized. The electronic structures of Ta<sub>5</sub>Ni<sub>4</sub>P<sub>4</sub> and TaNi<sub>2</sub>P were analyzed using the tight-binding linear muffin-tin orbital (TB-LMTO) and extended Hückel methods.</p>