Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saianand, Gopalan

  • Google
  • 7
  • 49
  • 705

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Composites12citations
  • 2021Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics61citations
  • 2021Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review272citations
  • 2021Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review272citations
  • 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material32citations
  • 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material32citations
  • 2020A comparative evaluation of physicochemical properties and photocatalytic efficiencies of cerium oxide and copper oxide nanofluids24citations

Places of action

Chart of shared publication
Karthikeyan, Vaithinathan
2 / 17 shared
Assi, Dani S.
1 / 11 shared
Vellaisamy, Arul Lenus Roy
3 / 18 shared
Qiao, Qiquan
1 / 3 shared
Venkatramanan, K.
1 / 1 shared
Gopalan, Anantha-Iyengar
2 / 2 shared
Bahrami, Behzad
1 / 2 shared
Reza, Khan Mamun
1 / 1 shared
Unni, Gautam E.
1 / 1 shared
Wilson, Gregory J.
1 / 5 shared
Sonar, Prashant
3 / 13 shared
Wong, Terence Kin Shun
2 / 5 shared
Mukhopadhyay, Sabyasachi
2 / 3 shared
Chakraborty, Amit K.
2 / 4 shared
Krishnamurthy, Satheesh
1 / 7 shared
Dey, Avishek
1 / 6 shared
Ribeiro, Camila Silva
1 / 1 shared
Chakrabortty, Sabyasachi
2 / 3 shared
Liu, Qian
2 / 3 shared
Kumar, Avishek
2 / 3 shared
Sai Krishna, Ambati Mounika
2 / 2 shared
Bamola, Priyanka
2 / 2 shared
Zhuk, Siarhei
2 / 7 shared
Ramakrishna, Seeram
2 / 19 shared
Ghosh, Siddhartha
2 / 3 shared
Guchhait, Asim
2 / 4 shared
Dalapati, Goutam Kumar
2 / 7 shared
Mahata, Chandreswar
2 / 3 shared
Biring, Sajal
2 / 2 shared
Sharma, Mohit
2 / 11 shared
Chakrabarty, Nilanjan
2 / 2 shared
Sharma, Himani
2 / 3 shared
Dey, Dr. Avishek
1 / 6 shared
Krishnamurthy, Professor Satheesh
1 / 24 shared
Silva Ribeiro, Camila
1 / 2 shared
Ilyas, A. M.
1 / 2 shared
Novitskii, Andrei
2 / 4 shared
Egbo, Kingsley O.
1 / 1 shared
Kwofie, Samuel
2 / 3 shared
Musah, Jamal-Deen
2 / 7 shared
Serhiienko, Illia
2 / 7 shared
Roy, Vellaisamy A. L.
2 / 10 shared
Yu, Kin Man
1 / 4 shared
Khovaylo, Vladimir
2 / 6 shared
Ilyas, Abdul-Mojeed Olabisi
1 / 2 shared
Kannan, Venkatramanan
1 / 2 shared
Rashmi, M.
1 / 1 shared
Kim, Wha-Jung
1 / 1 shared
Padmanaban, R.
1 / 3 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Karthikeyan, Vaithinathan
  • Assi, Dani S.
  • Vellaisamy, Arul Lenus Roy
  • Qiao, Qiquan
  • Venkatramanan, K.
  • Gopalan, Anantha-Iyengar
  • Bahrami, Behzad
  • Reza, Khan Mamun
  • Unni, Gautam E.
  • Wilson, Gregory J.
  • Sonar, Prashant
  • Wong, Terence Kin Shun
  • Mukhopadhyay, Sabyasachi
  • Chakraborty, Amit K.
  • Krishnamurthy, Satheesh
  • Dey, Avishek
  • Ribeiro, Camila Silva
  • Chakrabortty, Sabyasachi
  • Liu, Qian
  • Kumar, Avishek
  • Sai Krishna, Ambati Mounika
  • Bamola, Priyanka
  • Zhuk, Siarhei
  • Ramakrishna, Seeram
  • Ghosh, Siddhartha
  • Guchhait, Asim
  • Dalapati, Goutam Kumar
  • Mahata, Chandreswar
  • Biring, Sajal
  • Sharma, Mohit
  • Chakrabarty, Nilanjan
  • Sharma, Himani
  • Dey, Dr. Avishek
  • Krishnamurthy, Professor Satheesh
  • Silva Ribeiro, Camila
  • Ilyas, A. M.
  • Novitskii, Andrei
  • Egbo, Kingsley O.
  • Kwofie, Samuel
  • Musah, Jamal-Deen
  • Serhiienko, Illia
  • Roy, Vellaisamy A. L.
  • Yu, Kin Man
  • Khovaylo, Vladimir
  • Ilyas, Abdul-Mojeed Olabisi
  • Kannan, Venkatramanan
  • Rashmi, M.
  • Kim, Wha-Jung
  • Padmanaban, R.
OrganizationsLocationPeople

article

Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material

  • Novitskii, Andrei
  • Kwofie, Samuel
  • Musah, Jamal-Deen
  • Vellaisamy, Arul Lenus Roy
  • Ilyas, Abdul-Mojeed Olabisi
  • Serhiienko, Illia
  • Saianand, Gopalan
  • Khovaylo, Vladimir
Abstract

Recognizing high thermoelectric performance in semiconducting materials is a challenging task. This is because the Seebeck coefficient and electrical conductivity which constitute the thermoelectric power factor are unfavourably coupled. This means decoupling the transport properties of thermoelectric materials to enhance the power factor without compromising the thermal conductivity is essential. Herein we report that the substitution of erbium (Er) within bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>) results in a simultaneous enhancement in Seebeck coefficient and electrical conductivity via effective mass and Fermi energy optimization. The Er-Substitution in Bi<sub>2</sub>Se<sub>3</sub> does not only promote a simultaneous increase in Seebeck coefficient and electrical conductivity but also decreases the thermal conductivity through an enhancement in phonon scattering. <br/>   Consequently, the optimum composition is found for the Bi<sub>1</sub><sub>·</sub><sub>85</sub>Er<sub>0</sub><sub>·</sub><sub>15</sub>Se<sub>3</sub> sample instigating that, minimal substitution amount is required to optimize the thermoelectric performance. Our numerical calculation also shows that Er substitution alters the Fermi energy of the Bi<sub>2</sub>Se<sub>3</sub> TE materials, thereby enhancing the effective mass. Through Raman and XPS characterization, we also elucidate that Er substitution does not change the chemical structure and chemical bonding of the pristine material appreciably. It thus leads to improvement in the Seebeck coefficient and electrical conductivity via effective mass optimization. This unique work presents a facile, scalable, cost-effective, and controllable synthesis of nanostructured Bi<sub>2</sub>Se<sub>3</sub> toward realizing high-performance thermoelectric devices.

Topics
  • impedance spectroscopy
  • x-ray photoelectron spectroscopy
  • thermal conductivity
  • electrical conductivity
  • Bismuth
  • Erbium