People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vellaisamy, Arul Lenus Roy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recoverycitations
- 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb devicecitations
- 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performancecitations
- 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiencycitations
- 2023Eco-Friendly Cerium–Cobalt Counter-Doped Bi2Se3 Nanoparticulate Semiconductorcitations
- 2022Hierarchically Interlaced 2D Copper Iodide/MXene Composite for High Thermoelectric Performancecitations
- 2022Amorphous carbon nano-inclusions for strategical enhancement of thermoelectric performance in Earth-abundant Cu3SbS4citations
- 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Compositescitations
- 2022Thermoelectric properties of sulfide and selenide-based materialscitations
- 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applicationscitations
- 2021Ultralow Thermal Conductivity in Dual-Doped n-Type Bi2Te3 Material for Enhanced Thermoelectric Propertiescitations
- 2021Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaicscitations
- 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric materialcitations
- 2019Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materialscitations
- 2019Efficient oxygen electroreduction kinetics by titanium carbide@nitrogen doped carbon nanocompositecitations
- 2019Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysiscitations
- 2007Nanocomposite field effect transistors based on zinc oxide/polymer blendscitations
- 2004Influence of the substrate temperature to the performance of tris (8-hydroxyquinoline) aluminum based organic light emitting diodescitations
Places of action
Organizations | Location | People |
---|
article
Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material
Abstract
Recognizing high thermoelectric performance in semiconducting materials is a challenging task. This is because the Seebeck coefficient and electrical conductivity which constitute the thermoelectric power factor are unfavourably coupled. This means decoupling the transport properties of thermoelectric materials to enhance the power factor without compromising the thermal conductivity is essential. Herein we report that the substitution of erbium (Er) within bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>) results in a simultaneous enhancement in Seebeck coefficient and electrical conductivity via effective mass and Fermi energy optimization. The Er-Substitution in Bi<sub>2</sub>Se<sub>3</sub> does not only promote a simultaneous increase in Seebeck coefficient and electrical conductivity but also decreases the thermal conductivity through an enhancement in phonon scattering. <br/> Consequently, the optimum composition is found for the Bi<sub>1</sub><sub>·</sub><sub>85</sub>Er<sub>0</sub><sub>·</sub><sub>15</sub>Se<sub>3</sub> sample instigating that, minimal substitution amount is required to optimize the thermoelectric performance. Our numerical calculation also shows that Er substitution alters the Fermi energy of the Bi<sub>2</sub>Se<sub>3</sub> TE materials, thereby enhancing the effective mass. Through Raman and XPS characterization, we also elucidate that Er substitution does not change the chemical structure and chemical bonding of the pristine material appreciably. It thus leads to improvement in the Seebeck coefficient and electrical conductivity via effective mass optimization. This unique work presents a facile, scalable, cost-effective, and controllable synthesis of nanostructured Bi<sub>2</sub>Se<sub>3</sub> toward realizing high-performance thermoelectric devices.