Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Klemettinen, Lassi

  • Google
  • 17
  • 41
  • 434

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °C1citations
  • 2023Novel fluxing strategy of copper matte smelting and trace metals in E-Waste recycling10citations
  • 2021Leaching of rare earth elements from NdFeB magnets without mechanical pretreatment by sulfuric (H2SO4) and hydrochloric (HCl) acids24citations
  • 2021Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique62citations
  • 2021Precious Metal Distributions Between Copper Matte and Slag at High PSO2 in WEEE Reprocessing18citations
  • 2021Slag Chemistry and Behavior of Nickel and Tin in Black Copper Smelting with Alumina and Magnesia-Containing Slags22citations
  • 2021Handling trace elements in WEEE recycling through copper smelting-an experimental and thermodynamic study25citations
  • 2021Distribution of Co, Fe, Ni, and precious metals between blister copper and white metal5citations
  • 2021Iron activity measurements and spinel-slag equilibria in alumina-bearing iron silicate slags6citations
  • 2020Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smelting38citations
  • 2020Trace element distributions between matte and slag in direct nickel matte smelting9citations
  • 2019Behavior of Ga, In, Sn, and Te in Copper Matte Smelting31citations
  • 2019Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere89citations
  • 2019Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systems19citations
  • 2019Urban mining of precious metals via oxidizing copper smelting42citations
  • 2018Properties of Na2O–SiO2 slags in Doré smelting9citations
  • 2018Precious Metal Distributions in Direct Nickel Matte Smelting with Low-Cu Mattes24citations

Places of action

Chart of shared publication
Zulhan, Zulfiadi
1 / 2 shared
Taskinen, Pekka
15 / 34 shared
Sibarani, David
1 / 5 shared
Korda, Akhmad Ardian
1 / 3 shared
Prajitno, Djoko Hadi
1 / 3 shared
Muhammad, Fadhli
1 / 2 shared
Sukhomlinov, Dmitry
6 / 9 shared
Basuki, Eddy Agus
1 / 2 shared
Lindberg, Daniel
3 / 24 shared
Chen, Min
5 / 7 shared
Jokilaakso, Ari
11 / 19 shared
Michallik, Radoslaw
2 / 2 shared
Avarmaa, Katri
8 / 9 shared
Obrien, Hugh
9 / 9 shared
Wełna, Maja
1 / 1 shared
Adamski, Zbigniew
1 / 1 shared
Rycerz, Leszek
1 / 1 shared
Klemettinen, Anna
2 / 5 shared
Żak, Andrzej
1 / 4 shared
Matuska, Sabina
1 / 1 shared
Leśniewicz, Anna
1 / 2 shared
Chojnacka, Ida
1 / 1 shared
Salmi, Mika
1 / 28 shared
Partanen, Jouni
1 / 25 shared
Mousapour, Mehrdad
1 / 4 shared
Shi, Junjie
3 / 6 shared
Holland, Keiran
1 / 1 shared
Latostenmaa, Petri
2 / 4 shared
Virtanen, Olii
1 / 1 shared
Lahaye, Yann
1 / 1 shared
Peng, Chao
1 / 2 shared
Li, Yun
1 / 12 shared
Lundström, Mari
1 / 41 shared
Eric, Hurman
1 / 1 shared
Hellsten, Niko
1 / 1 shared
Salminen, Justin
1 / 3 shared
Niemi, Elina
1 / 1 shared
Obrien, H.
2 / 2 shared
Valkama, M.
1 / 1 shared
Johto, H.
1 / 1 shared
Piskunen, P.
1 / 2 shared
Chart of publication period
2024
2023
2021
2020
2019
2018

Co-Authors (by relevance)

  • Zulhan, Zulfiadi
  • Taskinen, Pekka
  • Sibarani, David
  • Korda, Akhmad Ardian
  • Prajitno, Djoko Hadi
  • Muhammad, Fadhli
  • Sukhomlinov, Dmitry
  • Basuki, Eddy Agus
  • Lindberg, Daniel
  • Chen, Min
  • Jokilaakso, Ari
  • Michallik, Radoslaw
  • Avarmaa, Katri
  • Obrien, Hugh
  • Wełna, Maja
  • Adamski, Zbigniew
  • Rycerz, Leszek
  • Klemettinen, Anna
  • Żak, Andrzej
  • Matuska, Sabina
  • Leśniewicz, Anna
  • Chojnacka, Ida
  • Salmi, Mika
  • Partanen, Jouni
  • Mousapour, Mehrdad
  • Shi, Junjie
  • Holland, Keiran
  • Latostenmaa, Petri
  • Virtanen, Olii
  • Lahaye, Yann
  • Peng, Chao
  • Li, Yun
  • Lundström, Mari
  • Eric, Hurman
  • Hellsten, Niko
  • Salminen, Justin
  • Niemi, Elina
  • Obrien, H.
  • Valkama, M.
  • Johto, H.
  • Piskunen, P.
OrganizationsLocationPeople

article

Iron activity measurements and spinel-slag equilibria in alumina-bearing iron silicate slags

  • Klemettinen, Lassi
  • Taskinen, Pekka
  • Jokilaakso, Ari
  • Avarmaa, Katri
Abstract

<p>Alumina is a common substance deporting in copper smelting slags when various secondary copper fractions, e.g. e-scrap or WEEE, are used as feedstock as such or along with primary sulphide concentrates. Properties of iron-silicate slags at high alumina concentrations, in the iron-alumina spinel saturation, have been studied at 1300 °C by a high temperature equilibration-quenching method combined with EPMA (electron probe microanalysis) phase composition data from the polished sections. The equilibrations were performed in fixed oxygen activity with platinum or palladium powder, which dissolved iron from the slag and generated a heterogeneous equilibrium system, characterised by the general equilibrium criterium in isothermal and isobaric conditions, as. μ<sub>alloy</sub>(Fe) = μ<sub>slag</sub>(Fe) = μ<sub>spinel</sub>(Fe). This criterium was used for measuring experimentally iron activities of molten silicate slags. The locations of the spinel-liquid slag tie-lines were also determined in the oxygen partial pressure range of 10<sup>−6</sup>–10<sup>−10</sup> atm. A comparison with the recent critical thermodynamic assessments of the Fe–O–Al<sub>2</sub>O<sub>3</sub> system indicates that the iron-alumina spinel-corundum phase boundary in silica-containing systems as a function of oxygen partial pressure is too steep and thus the assessed databases do not match with the experimental data of this study. The liquid slag domain from silica to iron oxide saturation is also smaller than expected earlier, as the spinel primary phase boundary locates at higher silica concentrations than e.g. obtained in the assessments of the Mtox database.</p>

Topics
  • impedance spectroscopy
  • phase
  • Oxygen
  • Platinum
  • copper
  • iron
  • quenching
  • phase boundary
  • palladium
  • electron probe micro analysis