Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sayyedan, F. S.

  • Google
  • 1
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Enhancing surface properties of (Fe,Cr)Al – Al2O3 nanocomposite by oxygen ion implantation17citations

Places of action

Chart of shared publication
Ashrafizadeh, F.
1 / 7 shared
Enayati, M. H.
1 / 8 shared
Sourani, F.
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ashrafizadeh, F.
  • Enayati, M. H.
  • Sourani, F.
OrganizationsLocationPeople

article

Enhancing surface properties of (Fe,Cr)Al – Al2O3 nanocomposite by oxygen ion implantation

  • Ashrafizadeh, F.
  • Sayyedan, F. S.
  • Enayati, M. H.
  • Sourani, F.
Abstract

Ion implantation has been used as a surface treatment technique on (Fe,Cr)Al-10%vol Al<sub>2</sub>O<sub>3</sub> nanocomposite to enhance its surface properties. The process was carried out at 150 kV with an oxygen dose of 1 × 10<sup>18</sup> ions/cm<sup>2</sup> at room temperature. Microstructural characterization and phase composition were performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) of the Al<sub>2</sub>O<sub>3</sub> layer formed on the nanocomposite surface. Mechanical properties measurements including hardness, fracture toughness and coefficient of friction were studied. Nanoindentation tests demonstrated an increase of 50% in the hardness value after ion implantation. Fracture toughness increased to a value of 21.3 ± 0.9 MPa m<sup>1/2</sup> after O<sub>2</sub> ion implantation. Scratch test results revealed an improvement in tribological behavior of the oxygen implanted surface compared to the un-implanted substrate. Cyclic oxidation tests, at 1100 °C, revealed that oxygen ion implantation slightly improved high temperature oxidation resistance of the nanocomposite.

Topics
  • nanocomposite
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • hardness
  • nanoindentation
  • transmission electron microscopy
  • fracture toughness
  • coefficient of friction