People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Levason, William
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Tungsten(VI) selenide tetrachloride, WSeCl 4 - synthesis, properties, coordination complexes and application of [WSeCl 4 (SenBu 2 )] for CVD growth of WSe 2 thin filmscitations
- 2021Mono- and di-phosphine oxide complexes of aluminium, gallium and indium with weakly coordinating triflate anions – Synthesis, structures and propertiescitations
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2020Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generatorscitations
- 2020Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour depositioncitations
- 2020Improved thermoelectric performance of Bi 2 Se 3 alloyed Bi 2 Te 3 thin films via low pressure chemical vapour depositioncitations
- 2018Electrodeposition of a functional solid state memory material – germanium antimony telluride from a non-aqueous plating bathcitations
- 2016Haloplumbate salts as reagents for the non-aqueous electrodeposition of leadcitations
- 2016A versatile precursor system for supercritical fluid electrodeposition of main-group materialscitations
- 2016Nanoscale arrays of antimony telluride single crystals by selective chemical vapor depositioncitations
- 2015Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivitycitations
- 2015Aza-macrocyclic complexes of Group 1 cations:synthesis, structures and density functional theory studycitations
- 2015Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5phase change memorycitations
- 2015A Versatile Precursor System for Supercritical Fluid Electrodeposition of Main-Group Materialscitations
- 2015Phase-change memory properties of electrodeposited Ge-Sb-Te thin filmcitations
- 2014Niobium(v) and tantalum(v) halide chalcogenoether complexes – towards single source CVD precursors for ME2thin filmscitations
- 2013Non-aqueous electrodeposition of metals and metalloids from halometallate saltscitations
- 2013Low pressure chemical vapour deposition of crystalline Ga2Te3 and Ga2Se3 thin films from single source precursors using telluroether and selenoether complexescitations
- 2013Telluroether and selenoether complexes as single source reagents for low pressure chemical vapor deposition of crystalline Ga2Te3 and Ga2Se3 thin filmscitations
- 2013Chromium(V) oxide trichloride, and some pentachlorido-oxido-chromate(V) salts: structures and spectroscopic characterizationcitations
- 2012Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursorscitations
- 2011Chemical vapor deposition of GaP and GaAs thin films from [nBu2Ga(µ-EtBu2)2GanBu2] (E= P or As) and Ga(PtBu2)3citations
- 2010Synthesis and structure of [{C7F15CO2}2AgAu(PPh3)]2 and its use in electrodeposition of gold–silver alloyscitations
- 2009Spectroscopic and Vanadium K-Edge EXAFS Studies on VO2Cl and the Crystal Structure of [{Cl2VO(O2PCl2)(POCl3)}2]citations
- 2009Electrodeposition of metals from supercritical fluidscitations
Places of action
Organizations | Location | People |
---|
article
Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour deposition
Abstract
Thermoelectric generators are attractive for autonomous sensor systems where regular battery replacement would not only cause an increase in the maintenance costs and discontinuity in the operation, but also destroy the concept of a truly autonomous system. Micro-thermoelectric generators utilise thin films of material for energy harvesting which can greatly reduce the amount of material used, which is especially important for rare elements such as tellurium. Thin films of Bi<sub>2</sub>Te<sub>3</sub> were successfully prepared via a single source precursor CVD method. The thermoelectric performance of these films is improved by alloying a Bi<sub>2</sub>Se<sub>3</sub> precursor to deposit ternary Bi<sub>2</sub>Te<sub>3-x</sub>Se<sub>x</sub>. The composition of the ternary system is tuned to optimise the combination of carrier concentration and mobility to give a three-fold enhancement of the thermoelectric power factor at 300 K, and six-fold enhancement at 500 K, with respect to Bi<sub>2</sub>Te<sub>3</sub>. This improvement from the substitution of Te with Se is believed to be due to donor effects, as well as point defects caused by this substitution. <br/>