Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mejri, Mahdi

  • Google
  • 1
  • 5
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications8citations

Places of action

Chart of shared publication
Estournès, Claude
1 / 141 shared
Thimont, Yohann
1 / 20 shared
Malard, Benoît
1 / 27 shared
Mouko, Hilaire Ihou
1 / 1 shared
Romanjek, Krunoslav
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Estournès, Claude
  • Thimont, Yohann
  • Malard, Benoît
  • Mouko, Hilaire Ihou
  • Romanjek, Krunoslav
OrganizationsLocationPeople

article

Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications

  • Estournès, Claude
  • Thimont, Yohann
  • Mejri, Mahdi
  • Malard, Benoît
  • Mouko, Hilaire Ihou
  • Romanjek, Krunoslav
Abstract

Understanding the thermal stability of the Mg2(Si,Sn) system is essential to define their safe tempera- tures of service. Despite its good thermoelectric performance, Mg2(Si,Sn) is subject to a phase separation during thermal cycling due to the miscibility gap, which leads to a degradation of its thermoelectric properties and affects its performance during device operation. Isothermal annealing at 500 !C and 750 !C were performed with different annealing time to investigate thermal stability of Mg2(Si,Sn). During the heat treatment, two phases were formed associated with porosity in the matrix. In addition, thickness of specimen was tracked and a significant expansion was detected. This phenomenon is attributed to the Kirkendall effect. The composition and the structure of the two forming phases were investigated by electron probe microanalysis and X-ray diffraction. Finally, the optimized thermal treatment allowed to stabilize the Mg2(Si,Sn) without porosity and the presence of two thermody- namically stabilized phase (Mg2Si0.41Sn0.59 and Mg2Si0.58Sn0.42) leading to a better reliability of the silicide thermoelectric modules.

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • forming
  • annealing
  • porosity
  • silicide