People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colas, Kimberly
CEA Saclay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Environmental degradation of nuclear materials: the use of advanced characterization techniques to understand physical and chemical phenomena
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloy ; Influence de l'irradiation par ions et neutrons sur la corrosion de l'alliage d'aluminium 6061-T6citations
- 2021Impact of the microstructure on the swelling of aluminum alloys: characterization and modelling basescitations
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloycitations
- 2020Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layerscitations
- 2020Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers ; Effet de la température et du pH sur la corrosion de l'alliage d'Al 6061-T6 et caractérisation des couches d'oxydescitations
- 2019Correlation between quenching rate, mechanical properties and microstructure in thick sections of Al Mg Si( Cu) alloyscitations
- 2019Effect of hardening on toughness captured by stress-based damage nucleation in 6061 aluminum alloycitations
- 2018Understanding of Corrosion Mechanisms after Irradiation: Effect of Ion Irradiation of the Oxide Layers on the Corrosion Rate of M5citations
- 2018Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C
- 2018Effect of ion irradiation of the metal matrix on the oxidation rate of Zircaloy-4citations
- 2018Microstructure Evolution in Ion-Irradiated Oxidized Zircaloy-4 Studied with Synchrotron Radiation Microdiffraction and Transmission Electron Microscopycitations
- 2017Stability of β″ nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiationcitations
- 2016Identification of monoclinic θ-phase dispersoids in a 6061 aluminium alloycitations
- 2015Influence of light ion irradiation of the oxide layer on the oxidation rate of Zircaloy-4citations
Places of action
Organizations | Location | People |
---|
article
Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers
Abstract
During operation in material testing reactors (MTR), the AA-6061-T6 alloy used for core components is covered by aluminium hydroxide. In this work we investigate the effects of parameters on pitting and uniform corrosion of the aluminium alloy 6061-T6 in the conditions found in MTR for the core structures: temperature (70e100 C) and pH (5 and 7.5). After corrosion experiments, characterisation techniques are used to observe the formed hydroxide, its composition and crystallographic structure (TEM, SEM, EDX, XRD, m-Raman spectroscopy and electron diffraction) and formulate hypotheses on the mechanisms of corrosion at play. At low temperature (70 C), the film is composed of two layers of different aluminium hydroxide phases. These two phases have different corrosion behaviours depending on the pH. The pH has a strong impact of the outer layer but not on the inner layer. PH increase is observed in deaerated medium, this pH variation is due to oxidation of magnesium of the alloy. In addition, corrosion models are used to predict the hydroxide thickness in MTR for a safe and efficient operation. These models are based on empirical correlations. The data obtained from this study allows to discuss the application of these models at low temperature (70 C).