People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaufmanova, Jirina
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanical, corrosion and biological properties of advanced biodegradable Mg-MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering
Abstract
Newly developed magnesium composite materials with a continuous network of MgF2 prepared by powder metallurgy exerted enhanced corrosion resistance and seems to be suitable for application in medicine as biodegradable implants. In this work, the influence of conditions of preparation of Mg and WE43 composite materials on final mechanical and corrosion properties of spark plasma sintered samples is revealed. Immersion in HF leads to the significant improvement of corrosion properties of Mg and WE43, while mechanical properties of WE43 alloy are reduced due to the specific interface. Moreover, cytocompatibility tests revealed the nontoxic behavior of magnesium fluoride coating on both Mg and WE43 alloy. The better proliferation of cells was observed on the WE43 composite material. (C) 2020 Elsevier B.V. All rights reserved.