People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Juraszek, Jean
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023In-depth study of structural, magnetic and XPS behavior of the double perovskite La2-xCex/2Erx/2NiMnO6citations
- 2021Thermopower in the Ba 1−δ M 2+x Ru 4−x O 11 (M = Co, Mn, Fe) magnetic hexagonal ruthenates
- 2021Long-Range Cationic Order Collapse Triggered by S/Cl Mixed-Anion Occupancy Yields Enhanced Thermoelectric Properties in Cu5Sn2S7citations
- 2020Influence of the electronic polymorphism of Ni on the classification and design of high entropy alloyscitations
- 2020Structure and magnetic properties of epitaxial CaFe2O4 thin filmscitations
- 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO 3 Multiferroic Filmscitations
- 2020Origin of the magnetic properties of Fe-implanted 4H-SiC semiconductorcitations
- 2020Non-auxetic/auxetic transitions inducing modifications of the magnetic anisotropy in CoFe2O4 thin filmscitations
- 2020A scalable synthesis route for multiscale defect engineering in the sustainable thermoelectric quaternary sulfide Cu26V2Sn6S32citations
- 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO3 Multiferroic Filmscitations
- 2019Characterization of nanostructure in low dose Fe-implanted p-type 6H-SiC using atom probe tomographycitations
- 2019A magnetic phase diagram for nanoscale epitaxial BiFeO3 filmscitations
- 2019A magnetic phase diagram for nanoscale epitaxial BiFeO3 filmscitations
- 20186H-SiC-Fe Nanostructures Studied by Atom Probe Tomographycitations
- 2014Control of ferroelectricity and magnetism in multi-ferroic BiFeO3 by epitaxial straincitations
- 2013A Mössbauer investigation of the formation of the Ni3Fe phase by high energy ball milling and subsequent annealingcitations
- 2013A Mössbauer investigation of the formation of the Ni3Fe phase by high energy ball milling and subsequent annealingcitations
- 2004CEMS Investigations of Swift Heavy Ion Irradiation Effects in Tb/Fe Multilayerscitations
Places of action
Organizations | Location | People |
---|
article
Influence of the electronic polymorphism of Ni on the classification and design of high entropy alloys
Abstract
International audience ; According to a recent Hume-Rothery approach, the electron concentration, e/a, and the average radius can be used to identify the domain of stability of HEAs and to estimate the phases that may occur in the alloy. The present study investigates the influence of the electronic polymorphism of nickel on the efficiency of the classification and on the design of HEAs for magnetic applications. Many different compositions were used, based on 4 to 7 elements out of a total 13 different elements (Co, Cr, Fe, Ni, Al, Cu, Pd, Ti, Mn, V, Nb, Sn, Ru). Phases have been determined by X-ray and neutron diffraction as well as in some cases high energy X-ray diffraction. The e/a for the constituent elements is calculated according to Massalski. The two polymorphic electronic structure of nickel, namely (e/a) Ni ¼ 1 or (e/a) Ni ¼ 2 are considered. The average e/a for the alloy is calculated assuming a solid solution case. The electronic structure [Ar] 3d 9 4s 1 seems to be more appropriate for the classification of HEAs. Based on a Self-organising Map predictions are made for the average magnetic moment at saturation for this electronic structure of Ni. Non-saturated values and data from the literature are compared with the predictions. The consequences of such results when modelling the structure and properties of Ni containing HEAs are presented, in particular the consideration of the shape and transformation of the Brillouin zone.