People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shanaghi, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021Enhanced corrosion resistance and reduced cytotoxicity of the AZ91 Mg alloy by plasma nitriding and a hierarchical structure composed of ciprofloxacin-loaded polymeric multilayers and calcium phosphate coatingcitations
- 2021Corrosion resistance, nano-mechanical properties, and biocompatibility of Mg-plasma-implanted and plasma-etched Ta/TaN hierarchical multilayered coatings on the nitrided AZ91 Mg alloycitations
- 2021Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloycitations
- 2021Effects of the tantalum intermediate layer on the nanomechanical properties and biocompatibility of nanostructured tantalum/tantalum nitride bilayer coating deposited by magnetron sputtering on the nickel titanium alloycitations
- 2020EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel methodcitations
- 2019Effect of Ti interlayer on corrosion behavior of nanostructured Ti/TiN multilayer coating deposited on TiAl<sub>6</sub>V<sub>4</sub>citations
- 2019Improved corrosion behavior of DLC-coated AZ91 Mg
- 2019Nano-mechanical properties of zirconia-alumina-benzotriazole nano-composite coating deposited on Al2024 by the sol-gel methodcitations
- 2019Effects of Benzotriazole on nano-mechanical properties of zirconia-alumina-Benzotriazole nanocomposite coating deposited on Al 2024 by the sol-gel methodcitations
- 2018Effects of silica and Ag on the electrochemical behavior of titania-based nanocomposite coatings deposited on 2024 aluminum alloy by the sol-gel methodcitations
- 2018Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputteringcitations
- 2017Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol–Gel Coatings Applied on 304 Stainless Steelcitations
- 2017Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing propertiescitations
- 2017Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputteringcitations
- 2012Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopycitations
- 2012Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVDcitations
- 2011Improved tribological properties of TiC with porous nanostructured TiO 2 intermediate layercitations
Places of action
Organizations | Location | People |
---|
article
EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel method
Abstract
Nano-composite coatings containing corrosion inhibitors increase the protection against corrosion and wear of aluminum and aluminum alloys. Although zirconia-alumina coatings have commercial applications because of the high corrosion resistance and appropriate mechanical properties; their performance is undermined by defects such as holes, pores, and micro-cracks. Corrosion inhibitors can reduce the amounts of defects in the coatings by repairing them with the aid of corrosion products. In this work, zirconia-alumina-benzotriazole coatings are deposited on Al2024 substrates by the sol-gel technique and the phase, structure, and morphology of the homogenous and crack-free coatings with a thickness of 950 nm and surface roughness of 0.276 nm are investigated in details. The corrosion properties are evaluated by electrochemical noise, potentiodynamic test and electrochemical impedance spectroscopy after immersion in 0.05 M NaCl solutions for 1, 2, 3, 4, 5, and 6 h. The open circuit potential variation observed from the zirconia-alumina-benzotriazole coating is less than that of the zirconia-alumina coating due to the more effective protection layer. And also the changes in the current as well as potential at different frequencies before and after the polarization test indicating that the release rate of benzotriazole shows the same healing behavior which is affected by the extent of the corrosion reactions. Benzotriazole decreases i<sub>corr</sub> by more than 31% and 84% compared to zirconia-alumina and Al2024, respectively. Benzotriazole enhances the corrosion resistance by reacting with oxygen to form corrosion products consequently delaying the cathodic reactions and improving the properties of the double layer.