People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreirós, Pedro A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2023Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy
- 2023VNbCrMo refractory high-entropy alloy for nuclear applicationscitations
- 2023Chromium-based bcc-superalloys strengthened by iron supplementscitations
- 2022Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L21 ferritic superalloyscitations
- 2022Study of Microstructure, Hydrogen Solubility, and Corrosion of Ta-Modified Zr–1Nb Alloys for Nuclear Applicationscitations
- 2021Effects of thermo-mechanical process on phase transitions, hydrogen solubility and corrosion of Ta-modified Zr-1Nb alloyscitations
- 2020Accurate quantitative EDS-TEM analysis of precipitates and matrix in equilibrium (α+β) Zr–1Nb alloys with Ta additioncitations
- 2019Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloycitations
- 2018Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbono
- 2018High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimencitations
- 2018Zirconium alloys with improved corrosion resistance and service temperature for use in the fuel cladding and core structural parts of a nuclear reactor
- 2018Efecto de la sustitución de V por Ti sobre las temperaturas de transformación de fase y el desajuste de red matriz/precipitado en la superaleación 76Fe-12Al-12V
- 2017Impact toughness transition temperature of ferritic Fe-Al-V alloy with strengthening Fe2AlV precipitatescitations
- 2017Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloycitations
- 2014Characterization of microstructures and age hardening of Fe 1-2xAlxVx alloyscitations
Places of action
Organizations | Location | People |
---|
article
Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloy
Abstract
<p>Ferritic Fe-Al-V alloys strengthened with L2<sub>1</sub>-Fe<sub>2</sub>AlV precipitates are candidate materials to meet the steam temperature/pressure requirements of super- or ultra-supercritical thermal power plants. Precipitate features, such as the size, morphology, volume fraction, coherency and modulus misfit, temperature of dissolution and coarsening rate, are important parameters to determine their mechanical properties at elevated temperatures. In this study, the effects of the addition of Ti on the formation and microstructural evolution of precipitation in the recently proposed Fe<sub>76</sub>Al<sub>12</sub>V<sub>12</sub> alloy have been systematically investigated, focusing specifically on Fe<sub>76</sub>Al<sub>12</sub>V<sub>(12-X)</sub>Ti<sub>X</sub> (at.%) where x = 0, 0.5, 1, 1.5, 2, 3. For the Ti-modified alloys, vanadium sites of the nanometric L2<sub>1</sub>-Fe<sub>2</sub>AlV precipitates are the main places where Ti is located. The maximum service temperature of the alloy is slightly increased with Ti substitution. Volume fraction, coarsening rate and coherency misfit of precipitates for the alloys aged at 700 °C increases not linearly with Ti addition. The features observed in the coarsening rate and in the lattice misfit are consistent with an elastic contribution to the interfacial energy between precipitate and matrix. It is shown that the residual stress, generated when the precipitate/matrix interface is formed, plays a decisive role to slow down the coarsening rate increment with the substitution of Ti, even when there is a strong increase of the misfit strain. As Ti increases, the room temperature strength of the alloy aged for short time increases gradually even when the average precipitate radius grows slightly. Based on the aforementioned microstructural and mechanical effects, it is discussed whether substituting V for Ti could be beneficial to improve the creep resistance of precipitate strengthened Fe<sub>76</sub>Al<sub>12</sub>V<sub>12</sub> ferritic alloy.</p>