Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baroiu, Liliana

  • Google
  • 2
  • 8
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films25citations
  • 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films25citations

Places of action

Chart of shared publication
Calmeiro, Tomás
1 / 10 shared
Pimentel, Ana
2 / 15 shared
Carlos, Emanuel
2 / 15 shared
Musat, Viorica
2 / 9 shared
Viorica, Ghisman Plescan
2 / 2 shared
Martins, Rodrigo
2 / 166 shared
Calmeiro, Tomas R.
1 / 1 shared
Fortunato, Elvira
1 / 25 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Calmeiro, Tomás
  • Pimentel, Ana
  • Carlos, Emanuel
  • Musat, Viorica
  • Viorica, Ghisman Plescan
  • Martins, Rodrigo
  • Calmeiro, Tomas R.
  • Fortunato, Elvira
OrganizationsLocationPeople

article

Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films

  • Calmeiro, Tomás
  • Pimentel, Ana
  • Carlos, Emanuel
  • Musat, Viorica
  • Viorica, Ghisman Plescan
  • Baroiu, Liliana
  • Martins, Rodrigo
Abstract

<p>Combining well known oxide materials with biocompatible polymers such as chitosan (Cs) and antimicrobial agents such as Ag can bring new functionalities to materials for electronics and lead to new border applications in the field of stretchable wearable bioelectronics and drug delivery systems. The paper reports on new hybrid thin films based on zinc oxide (ZnO) and Ag:ZnO nanoparticles dispersed in chitosan and incorporated in poly(methyl methacrylate) (PMMA) matrix by a modified sol-gel method. The structure, morphology, optical, electrical and antimicrobial properties of the obtained hybrid ZnO/Cs/PMMA and Ag:ZnO/Cs/PMMA thin films have been investigated. For electric characterization, current-voltage, capacitance-voltage and dielectric constant-frequency curves of the one and two-layers hybrid thin films deposed in MIS structure have been recorded. The dielectric constant values between 9.5 and 14.9 at 20 kHz, in addition with low surface roughness, optimal optical transmittance in visible and near-infrared region of about 90% and optical band gap (E<sub>g</sub>) values between 3.543 and 3.737 eV, indicate high potential applications of the obtained hybrid films in transparent bioelectronics. The antimicrobial activity of the hybrid sols used for the film's deposition and the resulted thin films have been investigated using the paper disc method on Mueller-Hinton agar against Gram negative E. coli and Gram positive S. aureus bacteria. Ag:ZnO/Cs/PMMA films showed good antimicrobial activity against S. aureus and E. coli.</p>

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • surface
  • polymer
  • thin film
  • zinc
  • dielectric constant