Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bakhtiari, Sam

  • Google
  • 4
  • 10
  • 153

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Nonuniform transformation behaviour of NiTi in a discrete geometrical gradient design18citations
  • 2019Modelling and experimental investigation of geometrically graded shape memory alloys with parallel design configuration22citations
  • 2017Functionally graded shape memory alloys95citations
  • 2017Experiments on deformation behaviour of functionally graded NiTi structures18citations

Places of action

Chart of shared publication
Shariat, Bashir
4 / 9 shared
Liu, Yinong
4 / 35 shared
Motazedian, Fakhrodin
2 / 2 shared
Zhang, Junsong
2 / 2 shared
Nam, Tae Hyun
2 / 2 shared
Yang, Hong
2 / 4 shared
Mahmud, Abdus S.
2 / 2 shared
Wu, Zhigang
2 / 4 shared
Meng, Qinglin
2 / 2 shared
Rio, Gerard
2 / 6 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Shariat, Bashir
  • Liu, Yinong
  • Motazedian, Fakhrodin
  • Zhang, Junsong
  • Nam, Tae Hyun
  • Yang, Hong
  • Mahmud, Abdus S.
  • Wu, Zhigang
  • Meng, Qinglin
  • Rio, Gerard
OrganizationsLocationPeople

article

Modelling and experimental investigation of geometrically graded shape memory alloys with parallel design configuration

  • Shariat, Bashir
  • Liu, Yinong
  • Bakhtiari, Sam
Abstract

The shape memory effect and pseudoelastic effect of NiTi shape memory alloys occur within respectively a narrow temperature and stress window associated with its martensitic transformation. This renders difficulty in accurate and reliable control for actuation applications using these properties. One approach to improving controllability of an actuation component is to design a geometrically graded shape memory structure to create a nonuniform transformation field within the structure. This paper presents analytical modelling and experimental evaluation of geometrically graded NiTi structures with parallel design configuration. Closed-form solutions are obtained to describe the stress-strain relationship of such structures under tensile loading conditions, which can be used as an engineering tool for optimizing shape memory performances of such components. The geometrically graded structures exhibited partial stress gradient over stress-induced transformation. A maximum stress window of 420 MPa was achieved over transformation stage, giving enlarged stress interval for shape memory actuation control.

Topics
  • impedance spectroscopy