People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berent, Katarzyna
Processes and Engineering in Mechanics and Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023The Interfacial Phenomena Between Graphene on Cu Substrate Covered by Ni, Cu, or W Layer, with Liquid Ga-Sn-Zn Alloycitations
- 2021Formation of Solid Solutions and Physicochemical Properties of the High-Entropy Ln1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (Ln = La, Pr, Nd, Sm or Gd) Perovskitescitations
- 2019Interfacial Phenomena between Liquid Ga-Based Alloys and Ni Substratecitations
- 2019Demystifying the sluggish diffusion effect in high entropy alloyscitations
- 2018Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approachcitations
- 2017Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1)citations
- 2016Evolution of microstructure and residual stress during annealing of austenitic and ferritic steelscitations
- 2016Evolution of microstructure and residual stress during annealing of austenitic and ferritic steelscitations
- 2016Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densitiescitations
- 2013Microstructure of Polycrystalline Zinc Subjected to Plastic Deformation by Complex Loading / Mikrostruktura Polikrystalicznego Cynku Odkształconego Plastycznie W Złozonym Schemacie Deformacjicitations
- 2013Microstructure of Al2O3-13TiO2 Coatings Deposited from Nanoparticles by Plasma Sprayingcitations
- 2012TEM Studies of Structure of Ag Base Nanocomposite Strengthened with Amorphous NiNbTiZr Alloy Intended for Electric Contact Materialscitations
Places of action
Organizations | Location | People |
---|
article
Demystifying the sluggish diffusion effect in high entropy alloys
Abstract
Interdiffusion studies in Co-Cr-Fe-Mn-Ni, Co-Fe-Mn-Ni, Co-Cr-Fe-Ni, and Co-Cr-Mn-Ni, as well as a reevaluation of the previous results obtained for Al-Co-Cr-Fe-Ni, were conducted. In the experimental part, diffusion couples were annealed at four different temperatures: 1230, 1270, 1310 and 1350 K for each system. Then, the results were evaluated with use of the optimization-based technique, combined with the Miedema's thermodynamic description, what allowed obtaining of tracer diffusion coefficients for all elements in all considered systems. The correctness of the applied approach was tested on the example of Co-Cr-Fe-Mn-Ni system, showing very good agreement of determined tracer diffusivities with the values obtained by other authors. Obtained values of diffusivities were compared with the available data for a number of conventional binary and ternary systems. No signs of diffusion retardation were observed in the absolute temperature scale. In the case of temperature scale normalized with respect to the melting point, an abnormal behavior, previously attributed to the HEAs' sluggish diffusion effect was observed. However, it occurred only for alloys with prominent manganese content and was completely independent of the number of components, being just as likely to occur in binary systems as in HEAs. Therefore, the alleged sluggishness of diffusion in HEAs should be treated just as a result of specific compositions of the previously studied alloys and cannot be generalized for all high entropy systems.