Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Okhay, O.

  • Google
  • 11
  • 34
  • 226

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2019Tuning electrical and thermoelectric properties of freestanding graphene oxide papers by carbon nanotubes and heat treatment14citations
  • 2018Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films18citations
  • 2016Thin film versus paper-like reduced graphene oxide: Comparative study of structural, electrical, and thermoelectrical properties18citations
  • 2015Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach1citations
  • 2013Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide9citations
  • 2013Electrical conductivity of LTA-zeolite in the presence of poly(vinyl alcohol) and poly(vinyl pyrrolidone) polymers5citations
  • 2011Enhancement of tetragonality and role of strontium vacancies in heterovalent doped SrTiO.sub.3./sub.28citations
  • 2011Role of trivalent Sr substituents and Sr vacancies in tetragonal and polar states of SrTiO342citations
  • 2011Role of trivalent Sr substituents and Sr vacancies in tetragonaland polar states of SrTiO.sub.3./sub.42citations
  • 2011Enhancement of tetragonality and role of strontium vacancies in heterovalent doped SrTiO328citations
  • 2008High dielectric constant and tunability of strontium titanate ceramics modified by chromium doping21citations

Places of action

Chart of shared publication
Goncalves, Lmv
1 / 1 shared
Vieira, Emf
1 / 4 shared
Tkach, A.
9 / 29 shared
Goncalves, G.
2 / 8 shared
Ventura, Joao
5 / 38 shared
Dias, C.
2 / 14 shared
Vilarinho, P. M.
3 / 42 shared
Reaney, I. M.
1 / 44 shared
Titus, E.
4 / 19 shared
Valente Goncalves, Lmv
1 / 1 shared
Ribeiro Da Silva, Mfr
1 / 1 shared
Krishna, R.
3 / 21 shared
Klaeui, M.
1 / 2 shared
Gracio, Jja
1 / 2 shared
Guerra, Lm
2 / 3 shared
Gracio, J.
2 / 19 shared
Salimian, M.
2 / 5 shared
Khairnar, Rs
1 / 1 shared
Pereira, C.
1 / 55 shared
Freire, C.
1 / 21 shared
Babu, Pr
1 / 1 shared
Guerra, L.
1 / 2 shared
Moreira, J. A.
2 / 14 shared
Gregora, I.
4 / 23 shared
Almeida, A.
4 / 78 shared
Chaves, M. R.
2 / 11 shared
Correia, T. M.
2 / 11 shared
Petzelt, J.
4 / 45 shared
Agostinho Moreira, Ja
1 / 29 shared
Chaves, Mr
2 / 5 shared
Correia, Tm
2 / 3 shared
Vilarinho, Pm
3 / 24 shared
Moreira, Ja
1 / 24 shared
Kholkin, Al
1 / 69 shared
Chart of publication period
2019
2018
2016
2015
2013
2011
2008

Co-Authors (by relevance)

  • Goncalves, Lmv
  • Vieira, Emf
  • Tkach, A.
  • Goncalves, G.
  • Ventura, Joao
  • Dias, C.
  • Vilarinho, P. M.
  • Reaney, I. M.
  • Titus, E.
  • Valente Goncalves, Lmv
  • Ribeiro Da Silva, Mfr
  • Krishna, R.
  • Klaeui, M.
  • Gracio, Jja
  • Guerra, Lm
  • Gracio, J.
  • Salimian, M.
  • Khairnar, Rs
  • Pereira, C.
  • Freire, C.
  • Babu, Pr
  • Guerra, L.
  • Moreira, J. A.
  • Gregora, I.
  • Almeida, A.
  • Chaves, M. R.
  • Correia, T. M.
  • Petzelt, J.
  • Agostinho Moreira, Ja
  • Chaves, Mr
  • Correia, Tm
  • Vilarinho, Pm
  • Moreira, Ja
  • Kholkin, Al
OrganizationsLocationPeople

article

Tuning electrical and thermoelectric properties of freestanding graphene oxide papers by carbon nanotubes and heat treatment

  • Goncalves, Lmv
  • Vieira, Emf
  • Okhay, O.
  • Tkach, A.
  • Goncalves, G.
  • Ventura, Joao
  • Dias, C.
Abstract

Electrical conductivity and Seebeck coefficient of freestanding paper of graphene oxide (GO) and GO reduced by heat treatment at 180 degrees C (rGO) are tuned by addition of carbon nanotubes (CNT). The electrical conductivity of rGO with 50% of CNT is raised to similar to 2940 S/m from similar to 613 S/m for pure rGO or similar to 34 S/m for GO with 50% of CNT without reduction. Moreover, Seebeck coefficient of rGO increases with addition of CNT from -7.04 mu V/K for pure rGO to -20.82 mu V/K for rGO with 50% of CNT, presenting n-type conductivity. As result, calculated power factor PF is enhanced with increasing CNT concentration and the highest PF similar to 1.28 mu W/(K(2)m) is obtained for rGO with 50% of CNT.

Topics
  • impedance spectroscopy
  • Carbon
  • nanotube
  • electrical conductivity