People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferenc, Jarosław
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cyclingcitations
- 2020Influence of W addition on phase constitution, microstructure and magnetic properties of the nanocrystalline Pr<inf>9</inf>Fe<inf>65</inf>WxB<inf>26-x</inf> (Where: x = 2, 4, 6, 8) Alloy Ribbons
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2019Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol.%B powderscitations
- 2017Thermal characteristics and amorphization in plasma spray deposition of Ni-Si-B-Ag alloy citations
- 2012Directly quenched nanocrystalline (Pr,Dy)-(Fe,Co)-Zr-Ti-B magnetscitations
- 2010The supercooled liquid region span of Fe-based bulk metallic glassescitations
- 2009Correlation between microstructure and temperature dependence of magnetic properties in Fe60 Co18 (Nb,Zr) 6 B15 Cu1 alloy seriescitations
- 2007Mössbauer study on amorphous and nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloyscitations
- 2005Influence of structure on coercivity in nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloyscitations
- 2004Crystallisation behaviour of rapidly quenched cast irons with small amount of boroncitations
Places of action
Organizations | Location | People |
---|
article
Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol.%B powders
Abstract
An elemental powder mixture of Fe-50at.%Al with addition of 30 vol.% of B was subjected to mechanical alloying (MA). Phase transformations occurring in the material throughout MA were investigated by Mössbauer spectroscopy. Examination of thermal behaviour of the MA product by differential thermal analysis revealed four exothermic peaks. Structural and phase transformations induced in the MA powders by heating in a calorimeter up to 530, 630, 730 and 1000 °C were investigated by X-ray diffraction and Mössbauer spectroscopy. The powders containing 30% of B in the as-milled state and after heating up to 1000 °C were examined by scanning electron microscopy. Magnetic properties of the MA product before and after heating up to 1000 °C were investigated. It was found that MA of the (Fe-Al)-30vol.%B powders resulted in the formation of a composite structure with boron particles embedded in the predominantly amorphous Fe-Al-B matrix. Additional Mössbauer measurements performed on MA products with a smaller boron content of 5, 10 and 20 vol.% evidenced the crucial role of boron addition in promoting the formation of Fe-Al-B amorphous phase by MA process. The structure of the (Fe-Al)-30vol.%B powders after their controlled heating comprised of fine B particles distributed in the two-phase matrix of nanocrystalline (FeAl or AlFe2B2-type) and amorphous phases or in the nanocrystalline matrix (AlFe2B2 + Al13Fe4), depending on the temperature up to which the material was heated. To the best of our knowledge, the nanocrystalline AlFe2B2 phase was obtained for the first time by mechanical alloying followed by heat treatment.