People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dutkiewicz, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Semi-Hybrid CO2 Laser Metal Deposition Method with Inter Substrate Buffer Zonecitations
- 2019Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbonscitations
- 2019The evolution of microstructure and magneto-structural properties of heat treated ni-mn-sn-in heusler alloys sintered by vacuum hot pressing
- 2018Structure and inverse magnetocaloric effect in Ni-Co-Mn-Sn(Si) Heusler alloyscitations
- 2017Structure and properties of AZ31 magnesium alloy after combination of hot extrusion and ECAPcitations
- 2005Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methodscitations
Places of action
Organizations | Location | People |
---|
article
Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbons
Abstract
Ni-Mn-Ga-Co-Cu melt spun ribbons were investigated in the as-cast and annealed states. The initial microstructure of the ribbons was highly anisotropic along the growing direction and was characterized by three different regions of equiaxed, columnar and dendritic grains. At ambient temperature, the microstructure was composed of two martensitic phases, i.e. non-modulated and seven-layer modulated, and the high temperature L21 austenite phase. The stabilization of the austenite phase was a consequence of a strong grain size reduction, especially close to the “contact” side of the ribbons. Subsequent annealing at 823 K triggered atomic ordering, which promoted an improvement in the magnetization. Additional annealing at 1173 K brought about a substantial refinement of the microstructure. The ribbon structure changed to a single non-modulated martensite phase, whereas on a microstructural level, the grains and martensitic plates coarsened considerably. The annealed ribbons resembled oligo-crystalline materials and may cause interest for magnetic field-induced strain applications. © 2018 Elsevier B.V.