People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raza, Rizwan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam supportcitations
- 2022Influence of Sintering Temperature on the Structural, Morphological, and Electrochemical Properties of NiO-YSZ Anode Synthesized by the Autocombustion Routecitations
- 2021Studies of electrical and optical properties of cadmium‐doped zinc oxide for energy conversion devicescitations
- 2021Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructurecitations
- 2021Electrochemical Investigations of BaCe0.7-xSmxZr0.2Y0.1O3-δ Sintered at a Low Sintering Temperature as a Perovskite Electrolyte for IT-SOFCscitations
- 2021Evaluation of BaCo0.Fe-4(0).4Zr0.2-xNixO3-delta perovskite cathode using nickel as a sintering aid for IT-SOFCcitations
- 2020Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell : A comprehensive reviewcitations
- 2019Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cellscitations
- 2018Electrochemical and thermal characterization of doped ceria electrolyte with lanthanum and zirconiumcitations
- 2018In Vitro Cytotoxicity and Morphological Assessments of GO-ZnO against the MCF-7 Cells: Determination of Singlet Oxygen by Chemical Trappingcitations
- 2015Significance enhancement in the conductivity of core shell nanocomposite electrolytes
- 2015Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cellscitations
- 2013A new energy conversion technology based on nano-redox and nano-device processescitations
- 2011Functional nanocomposites for advanced fuel cell technology and polygeneration
Places of action
Organizations | Location | People |
---|
article
Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cells
Abstract
<p>In recent scientific research, an interest has been gained significantly by rare earth metals such as cerium (Ce), samarium (Sm) and gadolinium (Gd) due to their use in fuel cells as electrolyte and catalysts. When used in an electrolyte, these materials lower the fuel cell's operating temperature compared to a conventional electrolyte, for example, yittria-stabilized zirconia (YSZ) which operates at a high temperature (≥800 °C). In this paper, the tri-doped ceria, M<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>2-δ</sub> (M = Sm<sub>0.1</sub> Ca<sub>0.05</sub> Gd<sub>0.05</sub>) electrolyte powders was synthesized using the co-precipitation method at 80 °C. These dopants were used for CeO<sub>2</sub> with a total molar ratio of 1 M. Dry-pressed powder technique was used to make fuel cell pellets from the powder and placed them in the furnace to sinter at 700 °C for 60 min. Electrical conductivity of such a pellet in air was 1.2 × 10<sup>−2</sup> S cm<sup>−1</sup> at 700 °C measured by the ProboStat-NorECs setup. The crystal structure was determined with the help of X-ray diffraction (XRD), which showed that all the dopants were successfully doped in CeO<sub>2</sub>. Raman spectroscopy and UV-VIS spectroscopy were also carried out to analyse the molecular vibrations and absorbance, respectively. The maximum open-circuit voltages (OCVs) for hydrogen and ethanol fuelled at 550 °C were observed to be 0.89 V and 0.71 V with power densities 314 mW cm<sup>−2</sup> and 52.8 mW cm<sup>−2</sup>, respectively.</p>