People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Ulla Gro
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023The effects of low oxidation-reduction potential on the performance of full-scale hybrid membrane-aerated biofilm reactorscitations
- 2021Synthesis and Thermal Degradation of MAl4(OH)12SO4·3H2O with M = Co2+, Ni2+, Cu2+, and Zn2+citations
- 2021Synthesis and Thermal Degradation of MAl 4 (OH) 12 SO 4 ·3H 2 O with M = Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+citations
- 2020The Effect of oxygen defects on the structural evolution of LiVPO4F1−yoy cathode materialscitations
- 2020Remarkable reversal of 13 C-NMR assignment in d 1 , d 2 compared to d 8 , d 9 acetylacetonate complexes:Analysis and explanation based on solid-state MAS NMR and computationscitations
- 2020Remarkable reversal of 13C-NMR assignment in d1, d2 compared to d8, d9 acetylacetonate complexescitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, γ-Mg(BH4)2-MHx, M = Li, Na, Mg, Cacitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, $mathrm{γ-Mg(BH_{4})_{2}-MH_{x}, M = Li, Na, Mg, Ca}$citations
- 2019Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transportcitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, γ-Mg(BH 4 ) 2 -MH x , M = Li, Na, Mg, Cacitations
- 2019Synthesis and Structural Characterization of a Pure ZnAl 4 (OH) 12 (SO 4 )·2.6H 2 O Layered Double Hydroxidecitations
- 2019Synthesis and Structural Characterization of a Pure ZnAl 4 (OH) 12 (SO 4 )·2.6H 2 O Layered Double Hydroxidecitations
- 2018Order in disorder:solution and solid-state studies of [MM] wheels (M = Cr, Al; M = Ni, Zn)citations
- 2018Order in disordercitations
- 2018In situ processing of fluorinated carbon—Lithium fluoride nanocompositescitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2015How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxidescitations
- 2015How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxidescitations
- 2015The effect of preparation method on the proton conductivity of indium doped tin pyrophosphatescitations
- 2014The stoichiometry of synthetic alunite as a function of hydrothermal ageing investigated by solid-state NMR spectroscopy, powder X-ray diffraction, and infrared spectroscopycitations
- 2012Preparation of Nafion 117™-SnO 2 Composite Membranes using an Ion-Exchange Methodcitations
- 2012Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Methodcitations
- 2010Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method
- 2010Fremstilling af Nafion 117™-SnO 2 kompositmembraner ved brug af en ionbytningsmetode ; Preparation of Nafion 117™-SnO 2 Composite Membranes using an Ion-Exchange Method
Places of action
Organizations | Location | People |
---|
article
Reactivity of magnesium borohydride – Metal hydride composites, γ-Mg(BH4)2-MHx, M = Li, Na, Mg, Ca
Abstract
<p>The reactivity and thermal decomposition of γ-Mg(BH<sub>4</sub>)<sub>2</sub>-MH<sub>x</sub>, M = Li, Na, Mg, and Ca composites has been examined with the objective of studying the hydrogen storage capability of the composites. The samples were prepared by manual grinding γ-Mg(BH<sub>4</sub>)<sub>2</sub> with a metal hydride to obtain homogenous mixtures. In-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and simultaneous thermogravimetric analysis, differential scanning calorimetry, and mass spectrometry was performed to analyse the decomposition mechanism, whereas solid-state <sup>11</sup>B nuclear magnetic resonance spectroscopy and SR-PXD was used to investigate the decomposition products. Interestingly, substitution reactions take place between magnesium borohydride and lithium, sodium and calcium hydride forming the more stable metal borohydrides, M(BH<sub>4</sub>)<sub>x</sub>, M = Li, Na or Ca. The composite γ-Mg(BH<sub>4</sub>)<sub>2</sub>-LiH has a hydrogen release at T ∼380–420 °C, which indicates the formation of amorphous LiBH<sub>4</sub> during decomposition. For the composites γ-Mg(BH<sub>4</sub>)<sub>2</sub>-NaH, formation of crystalline NaBH<sub>4</sub> is observed by SR-PXD from T = 150–450 °C, and hydrogen release ascribed to NaBH<sub>4</sub> is observed in MS data at T = 460–480 °C. γ-Mg(BH<sub>4</sub>)<sub>2</sub>-MgH<sub>2</sub> composite decomposes as the individual constituents. β-Ca(BH<sub>4</sub>)<sub>2</sub> is formed at T = 175–375 °C in the composites of γ-Mg(BH<sub>4</sub>)<sub>2</sub>-CaH<sub>2</sub>. Bragg diffraction from CaB<sub>6</sub> at T > 370 °C is detected by SR-PXD for γ-Mg(BH<sub>4</sub>)<sub>2</sub>-CaH<sub>2</sub> (1:0.5) but not for samples richer in CaH<sub>2</sub>. Release of diborane was not observed for any of the magnesium borohydride metal hydride composites.</p>