People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Sheng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigerationcitations
- 2023Laser powder bed fusion of the Ni-Mn-Sn Heusler alloy for magnetic refrigeration applicationscitations
- 2022High-density direct laser deposition (DLD) of CM247LC alloycitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Additive manufacturing of novel hybrid monolithic ceramic substratescitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021Effect of the preparation techniques of photopolymerizable ceramic slurry and printing parameters on the accuracy of 3D printed lattice structurescitations
- 2021Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structurescitations
- 2018Polymeric coatings with reduced ice adhesion
- 2018Suspended droplet alloyingcitations
- 2016Selective Laser Melting of TiNi Auxetic Structures
- 2016The development of TiNi-based negative Poisson's ratio structure using selective laser meltingcitations
Places of action
Organizations | Location | People |
---|
article
Suspended droplet alloying
Abstract
<p>A new combinatorial alloy synthesis method (suspended droplet alloying) has been developed as a high-throughput approach for alloy discovery. The method is based on using a laser to melt elemental or alloyed wires fed at a controlled rate to achieve a specific chemistry. In this study, the metallurgical characteristics of alloy buttons created using this technique were assessed for TiNi-based shape memory alloy buttons deposited using pure Ni, Ti, and Cu wires. The microstructural and chemical inhomogeneity was assessed using quantitative electron microscopy and X-ray diffraction. Furthermore, the phase transformation temperatures of the coupons have been compared to cast and heat-treated (reference) samples. In general, the samples displayed a limited local deviation from the target chemistry (±1 wt%), while displaying a fairly homogeneous microstructure with the expected phase distribution. Post-process homogenisation heat treatments enhanced the phase transformation response, approaching the response obtained from the reference samples.</p>