People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peplińska, Barbara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatmentcitations
- 2020Nanocomposite Gel as Injectable Therapeutic Scaffold: Microstructural Aspects and Bioactive Propertiescitations
- 2019Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticlescitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical propertiescitations
- 2018Gel with silver and ultrasmall iron oxide nanoparticles produced with Amanita muscaria extract: physicochemical characterization, microstructure analysis and anticancer propertiescitations
- 2018ZnS coating for enhanced environmental stability and improved properties of ZnO thin filmscitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationshipcitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocompositescitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
Places of action
Organizations | Location | People |
---|
article
Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical properties
Abstract
<p>Multilayered design showed itself to advantage for improvement of functional nitride coatings, which are widely required in various industry applications. This article reports on deposition and detailed characterization series of combined nano-multilayered coatings based on (TiAlSiY)N with changes in components of alternating binary layers. Vacuum-arc deposited (TiAlSiY)N/MoN, (TiAlSiY)N/CrN and (TiAlSiY)N/ZrN coatings were analyzed by means of various experimental techniques such as SEM with EDS, XRD and GIXRD, SIMS, XPS and Raman spectroscopy. Microstructure of (TiAlSiY)N/MoN coating was characterized by creation of fine-grained fcc-AlTiN phase of (200) plane with congruent growth of γ-Mo<sub>2</sub>N (200) due to high isostruturality of lattices of alternating layers. The formation of fcc-AlYTiN phase of (111) plane and fcc-TiCrN phase of (200) plane were observed in multilayered (TiAlSiY)N/CrN coating and referred to the loss of clear interfaces and the formation of transition layers due to the diffusion of Ti atoms. Nano-multilayered (TiAlSiY)N/ZrN system showed the formation of stoichiometric fcc compounds of TiN with (200) plane and ZrN with (111) plane, respectively. The evaluation of mechanical properties as nanohardness, reduced elastic modulus, elastic strain prior to failure, and resistance to plastic deformation measurements was performed. The presented results showed important information about the physical and mechanical properties of new nano-multilayered systems for their subsequent application, as well as improvement of existing achievements.</p>