People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yin, C-Y
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solutioncitations
- 2020Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applicationscitations
- 2018Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applicationscitations
- 2017Improving the optoelectronic properties of titanium-doped indium tin oxide thin filmscitations
- 2017Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitorcitations
- 2017Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin filmscitations
- 2016Structural thermal stability of graphene oxide-doped copper-cobalt oxide coatings as a solar selective surfacecitations
- 2016Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin filmscitations
- 2016Structural, optical, and mechanical properties of cobalt copper oxide coatings synthesized from low concentrations of sol-gel processcitations
- 2014Understanding local bonding structures of Ni-doped chromium nitride coatings through synchrotron radiation NEXAFS spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin films
Abstract
Titanium-doped indium tin oxide thin films were synthesized via a sol-gel spin coating process. Surface chemical bonding states and mechanical properties have been investigated as a function of titanium content (2 and 4 at%) and annealing temperature ranging from 400 to 600 °C with increments of 100 °C. Raman analysis was performed to study the phonon vibrations for the prepared samples and the results revealed the existence of ITO vibrational modes. The elemental compositions, bonding states and binding energies of the film materials were investigated using X-ray photoelectron spectroscopy (XPS) technique. The XPS results indicated that the ratio of the metallic elements (In, Sn, Ti) to the oxygen on the surface of the thin film coatings decreased due to the increase of the oxide layer on the surface of the thin films. Also, by increasing the annealing temperature up to 600 °C, the Ti 2p and Cl 2p signals were no longer detected for both 2 and 4 at% Ti contents, respectively, due to the thicker surface oxidation layer. Mechanical properties of the synthesized films were also evaluated using a nanoindentation process. Variations in the hardness (H) and the elastic modulus (E) were observed with different Ti at% and annealing temperatures. The hardness is within the range of 6.3–6.6 GPa and 6.7–6.8 GPa for 2 and 4 at% Ti content samples, respectively, while the elastic modulus is within the ranges of 137–143 and 139–143 GPa for 2 at% and 4 at% Ti contents samples, respectively. A combination of the highest H and E were achieved in the sample of 4% Ti content annealed at 600 °C. Furthermore, the H/E ratio ranges from 4.5 × 10−2 to 5.0 × 10−2 which reflects a reasonable level of wear resistance.