People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nowaczyk, Grzegorz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathwayscitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imagingcitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Functionalized multimodal ZnO@Gd <inf>2</inf> O <inf>3</inf> nanosystems to use as perspective contrast agent for MRIcitations
- 2016Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN-TiB <inf>2</inf> -TiSi <inf>2</inf>citations
- 2016Synthesis and study of bifunctional core-shell nanostructures based on ZnO@Gd<inf>2</inf>O<inf>3</inf>citations
- 2016Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofiberscitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Tuning the photodynamic efficiency of TiO<inf>2</inf> nanotubes against HeLa cancer cells by Fe-dopingcitations
- 2015Characterization of poly(ethylene 2,6-naphthalate)/polycarbonate blends by DSC, NMR off-resonance and DMTA methodscitations
- 2015Tailoring the structural, optical, and photoluminescence properties of porous silicon/TiO<inf>2</inf> nanostructurescitations
- 2015Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etchingcitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
- 2015Study on Structural, Mechanical, and Optical Properties of Al<inf>2</inf>O<inf>3</inf>-TiO<inf>2</inf> Nanolaminates Prepared by Atomic Layer Depositioncitations
- 2010Molecular dynamics in grafted polydimethylsiloxanescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and study of bifunctional core-shell nanostructures based on ZnO@Gd<inf>2</inf>O<inf>3</inf>
Abstract
<p>Bifunctional nanostructures based on ZnO nanoparticles (NPs) with controlled Gd<sub>2</sub>O<sub>3</sub> shell thicknesses were obtained by simple low-temperature methods (sol-gel technique and seed deposition method). The morphology, nanostructure, phase and chemical composition as well as luminescent and magnetic properties of the obtained core-shell nanostructures were investigated by transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) techniques, optical spectroscopy, and SQUID magnetometer. As-obtained ZnO NPs are highly monodispersed and crystalline with mean particles size distribution of about 7 nm. Modification of the ZnO NPs surface by Gd<sub>2</sub>O<sub>3</sub> shell leads to an increase of the ZnO particles size up to 80-160 nm and the formation the Gd<sub>2</sub>O<sub>3</sub> shell with size of 2-4 nm. The dependence of the phase composition, luminescent and magnetic properties on Gd<sub>2</sub>O<sub>3</sub> content are also discussed.</p>